Fixpunkt < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:11 Sa 16.02.2008 | Autor: | gnom |
Aufgabe | Es sei G eine Gruppe mit 35 und V eine Menge mit 23 Elementen. Man zeige, dass jede Operation G[mm]\times V--> V, (x,y)->x.v[/mm] mindestens einen Fixpunkt besitzt. |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|G|=35, |V|=23
für jedes [mm]v\inV[/mm] ist |B(v)| ein Teiler der Gruppenordnung,
d.h. |V| ist die Summe der Längen aller paarweise disjunkten Bahnen.
Es folgt, dass mindestens eine Bahn die Länge 1 hat, d.h. einen Fixpunkt hat.
meine Frage:
Warum ist |B(v)| ein Teiler der Gruppenordnung? Wie kann ich mir die Bahn von v vorstelln?
|V| ist die Summe der Längen aller paarweise disjunkten Bahnen.
Was bedeutet das?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:10 So 17.02.2008 | Autor: | andreas |
hi
> meine Frage:
> Warum ist |B(v)| ein Teiler der Gruppenordnung?
der stabilisator eines elements [mm] $\textrm{Stab}_G(x) [/mm] = [mm] G_x$ [/mm] (je nach notation) ist eine untergruppe von $G$. für jedes element aus der bahn $B(v)$ - also insbesondere für $v$ selbst - gibt es nun eine bijektion [mm] $G/\textrm{Stab}_G(v) \longrightarrow [/mm] B(v)$ gegeben durch $g [mm] \textrm{Stab}_G(v) \longmapsto [/mm] g.v$ (dies ist sogar ein isomorphismus von $G$-mengen). wieso folgt daraus wonach du fragst?
> Wie kann ich mir die Bahn von v vorstelln?
schau dir am besten die definition an. bei endlichen mengen ist eine bildliche vorstellung recht schwierig und auch nicht unbedingt hilfreich. wenn du ein bild willst, überlege dir, wie die bahnen unter der operation $O(2) [mm] \times \mathbb{R}^2 \longrightarrow \mathbb{R}^2; [/mm] (A, x) [mm] \longmapsto [/mm] Ax$ aussehen.
> |V| ist die Summe der Längen aller paarweise disjunkten Bahnen.
> Was bedeutet das?
$x [mm] \sim [/mm] y [mm] \; [/mm] : [mm] \Longleftrightarrow \; \exists \, [/mm] g [mm] \in [/mm] G: g.x = y$ ist eine äquivalenzrelation auf $V$ (mach dir das klar). die äquivalenzklassen sind gerade die bahnen. und da die äquivalenzklassen stets eine partition bilden (also eine disjunkte zerlegung), lässt sich $V$ schreiben als $V = [mm] \bigcup_{x \in R} [/mm] B(x)$, wobei $R$ ein repräsentantensystem der bahnen sei, also aus jeder bahn soll geau ein element in $R$ liegen. damit ist natürlich $|V| = [mm] \sum_{x \in R} [/mm] |B(x)|$.
grüße
andreas
|
|
|
|