www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Fläche zw.x-Achse,Graph&Gerade
Fläche zw.x-Achse,Graph&Gerade < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fläche zw.x-Achse,Graph&Gerade: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:56 Di 03.10.2006
Autor: Amy1988

Aufgabe
Bestimmen Sie die Fläche zwischen Graph, Tangente und x-Achse.

f(x) = [mm] (x-2)^4 [/mm]
Schnittpunkt der Tangente P (0;16)

Hey Leute...

also diese Aufgabe überfordert mich irgendwie ein wenig...
ich habe zwar Ansätze, aber irgendwo muss mir da ein fehler unterlaufen sein, den ich selbst nicht finde...

Ich schreibe mal auf, was ich bisher habe...

Als erstes habe ich versucht, die Gleichung der Tangente zu ermitteln.

g(x) = mx + b
m = f´(x) = [mm] 4(x-2)^3 [/mm]

f´(0) = -32

g(x) = -32x + b
16 = b

g(x) = -32x + 16

Ich hoffe das stimmt soweit?!
Nächster Schritt: Nullstellen bestimmen

g(x) = 0 => x = 0,5
f(x) = 0 => x= 2

Und jetzt sollten wir das Ganz enach zwei unterschiedlichen Varianten lösen...

Variante 1
-----------

[mm] \integral_{0}^{2}{f(x)-g(x) dx} [/mm] = [mm] 1/5(x-2)^5-(-64x^2 [/mm] + 16x)

= 230,4 Flächeneinheiten (FE)

Variante 2
-----------

f(x) - g(x) = [mm] (x-2)^4 [/mm] + 32x - 16 = p(x)

[mm] \integral_{0}^{2}{p(x) dx} [/mm] - [mm] \integral_{0}^{0,5}{g(x) dx} [/mm] =
[mm] 1/5(x-2)^5 [/mm] + [mm] 64x^2 [/mm] - 16x   - [mm] -64x^2 [/mm] + 16x =
225,6 FE

Also irgendwie kann das nicht stimmen, weil ja eigentlich bei beiden Varianten das selbe Ergebnis rauskommen muss...

I need some help =)

Danke im Voraus
Amy

        
Bezug
Fläche zw.x-Achse,Graph&Gerade: Antwort
Status: (Antwort) fertig Status 
Datum: 21:38 Di 03.10.2006
Autor: Zwerglein

Hi, Amy,

> Bestimmen Sie die Fläche zwischen Graph, Tangente und
> x-Achse.
>  
> f(x) = [mm](x-2)^4[/mm]
>  Schnittpunkt der Tangente P (0;16)

Mit "Schnittpunkt" ist vermutlich der Punkt gemeint, in dem die Tangente den Graphen berührt, stimmt's?

> Ich schreibe mal auf, was ich bisher habe...
>  
> Als erstes habe ich versucht, die Gleichung der Tangente zu
> ermitteln.
>  
> g(x) = mx + b
>  m = f´(x) = [mm]4(x-2)^3[/mm]
>  
> f´(0) = -32
>  
> g(x) = -32x + b
>  16 = b
>  
> g(x) = -32x + 16
>  
> Ich hoffe das stimmt soweit?!

[ok]

>  Nächster Schritt: Nullstellen bestimmen
>  
> g(x) = 0 => x = 0,5
>  f(x) = 0 => x= 2

  

> Und jetzt sollten wir das Ganze nach zwei unterschiedlichen
> Varianten lösen...
>  
> Variante 1
>  -----------
>  
> [mm]\integral_{0}^{2}{f(x)-g(x) dx}[/mm] = [mm]1/5(x-2)^5-(-64x^2[/mm] + 16x) = 230,4 Flächeneinheiten (FE)

Das stimmt natürlich nicht! Da die x-Achse als Begrenzungslinie auftritt, musst Du die Integration bei x=0,5 unterbrechen und so rechnen:
[mm] \integral_{0}^{\red{0,5}}{f(x)-g(x) dx} [/mm] + [mm] \integral_{\red{0,5}}^2 [/mm] f(x)dx.

(Übrigens hast Du zusätzlich die Stammfunktion von g falsch berechnet!)

  

> Variante 2
>  -----------
>  
> f(x) - g(x) = [mm](x-2)^4[/mm] + 32x - 16 = p(x)
>  
> [mm]\integral_{0}^{2}{p(x) dx}[/mm] - [mm]\integral_{0}^{0,5}{g(x) dx}[/mm]
> =
>  [mm]1/5(x-2)^5[/mm] + [mm]64x^2[/mm] - 16x   - [mm]-64x^2[/mm] + 16x =
>  225,6 FE
>  
> Also irgendwie kann das nicht stimmen, weil ja eigentlich
> bei beiden Varianten dasselbe Ergebnis rauskommen muss...

Und vor allem NICHT GAR SO GROSSE WERTE!

Auch Deine 2. Variante stimmt nicht!
Wenn Du Dir die Situantion mal skizzierst
(der Graph von f sieht wie eine gestauchte Parabel aus mit Scheitel S(2 / 0), die die y-Achse bei y=16 schneidet.
In diesem Punkt P(0 / 16) wird auch die Tangente gezeichnet),
dann erkennst Du, dass die Fläche zwischen der Tangente und den beiden Koordinatenachsen ein schmales Dreieck (Breite 0,5 und Höhe 16, also Fläche: 4) ergibt.
Folglich kannst Du zunächst die Fläche unter dem Graphen von f zwischen 0 und 2 ausrechnen und anschließend dieses Dreieck subtrahieren:

[mm] \integral_{0}^{2}{(x-2)^{4} dx} [/mm] - 4 = ...

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]