www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Flächeninhalt berechnen
Flächeninhalt berechnen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächeninhalt berechnen: Anwendung GTR
Status: (Frage) beantwortet Status 
Datum: 07:25 Mi 19.09.2018
Autor: Mathilda1

Aufgabe
Berechnen Sie die Fläche unter dem Graphen f(x) = [mm] 1/x^2 [/mm] im Intervall I= [-2;2]

In diesem Intervall ist ja 0 eingeschlossen, wofür die Funktion nicht definiert ist. Wie kann ich den Flächeninhalt trotzdem mit dem GTR bestimmen?
Vielen Dank

        
Bezug
Flächeninhalt berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:42 Mi 19.09.2018
Autor: fred97


> Berechnen Sie die Fläche unter dem Graphen f(x) = [mm]1/x^2[/mm] im
> Intervall I= [-2;2]
>  In diesem Intervall ist ja 0 eingeschlossen, wofür die
> Funktion nicht definiert ist. Wie kann ich den
> Flächeninhalt trotzdem mit dem GTR bestimmen?
>  Vielen Dank  

Die Aufgabe ist ja völlig bescheuert ! Das uneigentliche Integral [mm] $\int_{-2}^2 \frac{1}{x^2} [/mm] dx$ ist divergent:

Sei $0<a<2$. Dann ist [mm] $\int_{a}^2 \frac{1}{x^2} [/mm] dx=[- [mm] \frac{1}{x}]_a^2=\frac{1}{a}-\frac{1}{2} \to \infty$ [/mm]  für $a [mm] \to [/mm] 0+$.

Analog: ist $-2<a<0$, so hat man  [mm] $\int_{-2}^a \frac{1}{x^2} [/mm] dx [mm] \to \infty$ [/mm] für  $a [mm] \to [/mm] 0-$.


Bezug
        
Bezug
Flächeninhalt berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:14 Mi 19.09.2018
Autor: abakus


> Berechnen Sie die Fläche unter dem Graphen f(x) = [mm]1/x^2[/mm] im
> Intervall I= [-2;2]
>  In diesem Intervall ist ja 0 eingeschlossen, wofür die
> Funktion nicht definiert ist. Wie kann ich den
> Flächeninhalt trotzdem mit dem GTR bestimmen?
>  Vielen Dank  


Ist das die Originalaufgabe, oder handelt es sich um eine Anwendungsaufgabe mit einem speziellen Betonelement (welches auch noch von anderen Linien begrenzt ist)?


Bezug
                
Bezug
Flächeninhalt berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:21 Mi 19.09.2018
Autor: fred97


> > Berechnen Sie die Fläche unter dem Graphen f(x) = [mm]1/x^2[/mm] im
> > Intervall I= [-2;2]
>  >  In diesem Intervall ist ja 0 eingeschlossen, wofür die
> > Funktion nicht definiert ist. Wie kann ich den
> > Flächeninhalt trotzdem mit dem GTR bestimmen?
>  >  Vielen Dank  
>
>
> Ist das die Originalaufgabe, oder handelt es sich um eine
> Anwendungsaufgabe mit einem speziellen Betonelement
> (welches auch noch von anderen Linien begrenzt ist)?

Hier hätte ich ein solches Betonelement:

https://www.youtube.com/watch?v=Zyp5Idt7aa8&feature=youtu.be


>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]