www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - Flächeninhalt eines Dreiecks
Flächeninhalt eines Dreiecks < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächeninhalt eines Dreiecks: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:13 Di 20.02.2007
Autor: VivaColonia

Hallo!
Ich kann folgende Aufgabe nicht lösen.
Gegeben sind die 3 Punkte A(8/0/0), B(0/6/0) und C( 0/6/4), die ein rechtwinkliges Dreieck bilden. Allerdings soll ich den Flächeninahlt ausdrücklich nicht A=0,5* Strecke AB* Strecke BC  berechnen.
Nun frage ich mich wie ich das anstellen soll.
Ich weiß nicht, wie ich eine Höhe berechnen soll, die ich zur Berechnung des Flächeninhalts ja brauche.
Habe versucht einen Vektor zu finden, der senkrecht auf der Strecke AC steht.
Das bringt mich aber überhaupt nicht weiter.
Wäre für jede Hilfe sehr dankbar!

        
Bezug
Flächeninhalt eines Dreiecks: Antwort
Status: (Antwort) fertig Status 
Datum: 02:54 Di 20.02.2007
Autor: donquixote

Hi,
vermute mal, dass der Flächeninhalt des Dreiecks mit Hilfe des Vektorrproduktes im [mm] \IR^{3} [/mm] berechnet werden soll. Hierzu musst du ähnlich vorgehen wie du beschrieben hast.
[mm] \overline{AB} [/mm] = (-8,6,0)
[mm] \overline{BC} [/mm] = (0,0,4)

[mm] \vektor{x_{1}\\x_{2}\\x_{3}} \times \vektor{y_{1}\\y_{2}\\y_{3}} [/mm] = [mm] \vektor{x_{2}*y_{3}-x_{3}*y_{2}\\x_{3}*y_{1}-x_{1}*y_{3}\\x{1}*y_{2}-x{2}*y{1}} [/mm]

also:
(-8,6,0) [mm] \times [/mm] (0,0,4) = (24,32,0)

Nun muss man wissen, dass die Länge von x [mm] \times [/mm] y gleich der Fläche des von x und y aufgespannten Parallelgramms ist.

Fläche des aufgespannten Parallelogramms = [mm] \wurzel{24^{2}+ 32^{2}} [/mm] = 40 (Betrag des Vektorproduktes von x und y)

Fläche des Dreiecks = [mm] \bruch{1}{2} [/mm] * 40 = 20

Bezug
        
Bezug
Flächeninhalt eines Dreiecks: ähnliche Aufgabe
Status: (Antwort) fertig Status 
Datum: 09:07 Di 20.02.2007
Autor: informix

Hallo VivaColonia,

> Hallo!
>  Ich kann folgende Aufgabe nicht lösen.
>  Gegeben sind die 3 Punkte A(8/0/0), B(0/6/0) und C(
> 0/6/4), die ein rechtwinkliges Dreieck bilden. Allerdings
> soll ich den Flächeninahlt ausdrücklich nicht A=0,5*
> Strecke AB* Strecke BC  berechnen.
>  Nun frage ich mich wie ich das anstellen soll.
> Ich weiß nicht, wie ich eine Höhe berechnen soll, die ich
> zur Berechnung des Flächeninhalts ja brauche.
>  Habe versucht einen Vektor zu finden, der senkrecht auf
> der Strecke AC steht.
>  Das bringt mich aber überhaupt nicht weiter.
>  Wäre für jede Hilfe sehr dankbar!  

[guckstduhier] andere Aufgabe

Die dort entwickelten Formeln gelten auch im [mm] $\IR^3$. [/mm]

Gruß informix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]