Flächeninhalt eines Dreiecks < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:26 Sa 30.06.2007 | Autor: | Munzijoy |
Aufgabe | Für jedes k>0 ist eine Funktion [mm] f_k [/mm] gegeben durch [mm] f_k(x)=k*e-k*e^{-x} [/mm] x Element R. Ihr Schaubild [mm] C_k [/mm] schneidet die x-Achse in Punkt N.
Die Gerade x=k mit k>0 schneidet [mm] C_k [/mm] im Punkt [mm] P_k [/mm] und die Asymptote von [mm] C_k [/mm] im Punkt [mm] Q_k; [/mm] die y-Achse schneidet die Asymptote von [mm] C_k [/mm] im Punkt [mm] R_k. [/mm] Diese Punkte bilden ein Dreieck. Berechne dessen Flächeninhalt A(k). Untersuche, ob A(k) ein Maximum besitzt. |
Die erste Teilaufgabe habe ich nach einigem Überlegen gelöst. Bei der Teilaufgabe "Untersuche, ob A(k) ein Maximum besitzt" bin ich mir nicht sicher, wie ich hier vorgehen sollte. A(k) ist nach meinen Berechnungen [mm] \bruch{k_x*(k*e-f(k_x)}{2}, [/mm] wobei [mm] k_x [/mm] der Parameter der Funktion x=k ist: [Dateianhang nicht öffentlich] Ich bin mir lediglich nicht sicher, wie ein konstanter Wert A(k) ein Maximum besitzen kann und wie ich dieses berechnen könnte.
Dateianhänge: Anhang Nr. 1 (Typ: png) [nicht öffentlich]
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:40 Sa 30.06.2007 | Autor: | leduart |
Hallo
das k in x=k und das k in [mm] f_k(x) [/mm] sind laut Aufgabe dasselbe.
damit hast du A richtig berechnet, wenn du einfach dein [mm] k_x=k [/mm] setzt.
damit hast du [mm] A(K)=k^2*e^{-k} [/mm] und suchst ein Maximum bei Änderung von k. Ein Minimum hast du schon mal sicher für k=0 ,-).
Gruss leduart
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 21:09 Sa 30.06.2007 | Autor: | Munzijoy |
Ja, natürlich [mm] k_x [/mm] = k. Aber wie kommt man dann auf [mm] k^{2}*e^{-k}, [/mm] bzw. kann man meine Gleichung weiterverwenden? Müsste ich nun die Ableitung von [mm] k^{2}*e^{-k}, [/mm] 0 setzen um ein Maxima für k zu bestimmen?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:28 Sa 30.06.2007 | Autor: | Loddar |
Hallo Munzijoy!
Deine o.g. Gleichung mit $A(k) \ = \ [mm] \bruch{1}{2}*k^2*e^{-k}$ [/mm] ist schon richtig (Leduart hat da den Faktor [mm] $\bruch{1}{2}$ [/mm] vergessen).
Diese Funktion $A(k)_$ nun nach $k_$ ableiten und die Nullstellen der 1. Ableitung bestimmen ...
Gruß
Loddar
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:53 Sa 30.06.2007 | Autor: | Munzijoy |
Dann funktioniert es. Am Ende dre Rechnung steht ein Maximum bei 0, dass jedoch auf Grund der Aufgabenstellung entfällt und [mm] x_0=2. [/mm] Vielen Dank.
|
|
|
|