www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Folge Supremum
Folge Supremum < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folge Supremum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:36 Mi 22.11.2006
Autor: wieZzZel

Aufgabe
Sei M eine Teilmenge von [mm] \IR [/mm] .  Zeigen Sie, dass sup M = [mm] \infty [/mm] genau dann gilt, wenn es eine Folge [mm] (x_n) [/mm] in M gibt mit [mm] x_n [/mm] --> [mm] \infty [/mm] .

Hallo.

Habe bei dieser Aufgabe mal eine Frage.

Würde den Beweis indirekt machen.

Angenommen es gebe ein Supremum S < [mm] \infty [/mm] .

Da aber die Folge [mm] (x_n) [/mm] nach [mm] \infty [/mm] strebt ist die Eigenschaft S [mm] \ge [/mm] m  für alle m [mm] \in [/mm] M nicht erfüllt.

Reicht das und/oder wie schreibt man das am Besten formal auf?

Danke für eure Hilfe und machts gut.

Tschüß sagt Röby


        
Bezug
Folge Supremum: Antwort (nicht fertig)
Status: (Antwort) noch nicht fertig Status 
Datum: 02:11 Sa 25.11.2006
Autor: zahlenspieler


> Sei M eine Teilmenge von [mm]\IR[/mm] .  Zeigen Sie, dass sup M =
> [mm]\infty[/mm] genau dann gilt, wenn es eine Folge [mm](x_n)[/mm] in M gibt
> mit [mm]x_n[/mm] --> [mm]\infty[/mm] .
>  Hallo.
>  
> Habe bei dieser Aufgabe mal eine Frage.
>  
> Würde den Beweis indirekt machen.
>  
> Angenommen es gebe ein Supremum S < [mm]\infty[/mm] .
>  
> Da aber die Folge [mm](x_n)[/mm] nach [mm]\infty[/mm] strebt ist die
> Eigenschaft S [mm]\ge[/mm] m  für alle m [mm]\in[/mm] M nicht erfüllt.
>  
> Reicht das und/oder wie schreibt man das am Besten formal
> auf?
>  
> Danke für eure Hilfe und machts gut.
>  
> Tschüß sagt Röby

Hallo wieZzZel

>  

wenn Du $A [mm] \gdw [/mm] B$ (A, B Ausagen) zeigen sollst, mußt Du $A [mm] \folgt [/mm] B$ und $B [mm] \folgt [/mm] A$ zeigen (alternativ: $A [mm] \folgt [/mm] B$ und [mm] $\not [/mm] A [mm] \folgt \not [/mm] B$.)

Aus deinem "Beweis" ging irgendwie nicht hervor, daß es eine Folge in $M$ gibt, die gegen [mm] $+\infty$ [/mm] konvergiert: Nimm als Beispiel [mm] $M=\IR^+ \cup [/mm] [-1,0]$. Die Folge [mm] $(x_n)=(-1)^n$ [/mm] liegt nat. in $M$, aber konvergiert nicht. D.h. wenn Du [mm] $\sup M=\infty \folgt \exists (x_n)_{x_n \in M}: \sup x_n=\infty$ [/mm] zeigen willst, mußt Du da schon ein Beispiel angeben :-).
Mfg
zahlenspieler


Bezug
                
Bezug
Folge Supremum: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:44 Sa 25.11.2006
Autor: wieZzZel

Hallo Zahlenspieler.

Ich kann leider nicht viel mit dieser Antwort anfangen

>Nimm als Beispiel [mm]M=\IR^+ \cup [-1,0][/mm]. Die Folge [mm](x_n)=(-1)^n[/mm]

> liegt nat. in [mm]M[/mm], aber konvergiert nicht. D.h. wenn Du [mm]\sup M=\infty \folgt \exists (x_n)_{x_n \in M}: \sup x_n=\infty[/mm]
> zeigen willst, mußt Du da schon ein Beispiel angeben :-).

Soll das das Beispiel sein???
Was zeigt das mir???

Würde mich über eine Antwort freuen.

Machs gut

Bezug
                        
Bezug
Folge Supremum: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:23 Mo 27.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]