www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Formelvereinfachung beweisen
Formelvereinfachung beweisen < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Formelvereinfachung beweisen: Wie beweise ich folgendes?
Status: (Frage) beantwortet Status 
Datum: 14:03 Do 08.06.2006
Autor: Slimane

Hallo,

ich brauche dringend Hilfe beim Beweis meiner eigens vereinfachten Formel.

Gegeben ist der linke Teil der Formel. Durch probieren habe ich herausgefunden, dass dies genau das gleich ist wie der rechte Teil der Formel. Aber wie zum Henker kann ich das nachweisen, dass das seine Richtigkeit hat?

[mm] \bruch{\wurzel{12+4\wurzel{5}}}{5+\wurzel{5}}=\bruch{\wurzel{2}}{\wurzel{5}} [/mm]


Genau das Gleiche Problem hab ich bei folgender Vereinfachung:

Gegeben ist:

[mm] \tan \alpha [/mm] = [mm] \bruch{1+\wurzel{5}}{2} [/mm]

Der Winkel ist demzufolge: [mm] \alpha [/mm] = 58,28252559°

Diesen Winkel verdoppel ich und erhalte: [mm] 2*\alpha=116,5650512° [/mm]

Würde ich davon jetzt den [mm] \sin [/mm] ermitteln erhalte ich  [mm] \sin \alpha [/mm] = [mm] \bruch{2}{\wurzel{5}} [/mm]

Wie weise ich die Richtigkeit rechnerisch nach?

        
Bezug
Formelvereinfachung beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:23 Do 08.06.2006
Autor: mathiash

Hallo und guten Tag,

>  
> [mm]\bruch{\wurzel{12+4\wurzel{5}}}{5+\wurzel{5}}=\bruch{\wurzel{2}}{\wurzel{5}}[/mm]

Wo ist das Problem ? Quadriere linke und rechte Seite:

[mm] \frac{12+4\cdot\sqrt{5}}{30+10\sqrt{5}}=\frac{4\cdot (3+\sqrt{5})}{10\cdot (3+\sqrt{5})} [/mm] = [mm] \frac{2}{5} [/mm]

>  
>
> Genau das Gleiche Problem hab ich bei folgender
> Vereinfachung:
>  
> Gegeben ist:
>  
> [mm]\tan \alpha[/mm] = [mm]\bruch{1+\wurzel{5}}{2}[/mm]

Es ist doch [mm] \tan (\alpha)=\frac{\sin (\alpha)}{\cos (\alpha)} [/mm] und

[mm] \sin^2 (\alpha)+\cos^2 (\alpha)=1 [/mm]

Lös die zweite Gl. nach Sinus auf, setz das in die Tanges-Gl ein und lös auf, Du bekommst laut meiner Rechnung:

[mm] \cos^2(\alpha) [/mm] = [mm] \frac{4}{10+2\cdot\sqrt{5}} [/mm]

und somit

[mm] \sin^2(\alpha)=\frac{6+2\sqrt{5}}{10+2\sqrt{5}} [/mm]

Mag sein, dass ich mich irgendwo verrechnet habe - der Ansatz jedoch sollte zum Ziel führen.

Gruss,

Mathias

>  
> Der Winkel ist demzufolge: [mm]\alpha[/mm] = 58,28252559°
>  
> Diesen Winkel verdoppel ich und erhalte:
> [mm]2*\alpha=116,5650512°[/mm]
>  
> Würde ich davon jetzt den [mm]\sin[/mm] ermitteln erhalte ich  [mm]\sin \alpha[/mm]
> = [mm]\bruch{2}{\wurzel{5}}[/mm]
>  
> Wie weise ich die Richtigkeit rechnerisch nach?

Bezug
        
Bezug
Formelvereinfachung beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:51 Do 08.06.2006
Autor: Slimane

Okay, danke ersteinmal.

Das Lösen des ersten Problems kann ich nachvollziehen (warum kam ich da nicht selber drauf - vielleicht zuviel nachgedacht)

Beim 2. Problem komm ich mit umformen auch zu deinem Ergebnis

[mm] \sin^2\alpha [/mm] = [mm] \bruch{3+\wurzel{5}}{5+\wurzel{5}} [/mm]  (1)

Mein Problem ist nun, dass ich den Winkel [mm] \alpha [/mm] am Ende als [mm] 2\alpha [/mm] betrachte.

Sagen wir mal so: [mm] 2\alpha=\beta [/mm]

Somit muss ich am Ende folgende herausbekommen: [mm] \sin\beta=\bruch{2}{\wurzel{5}} [/mm]

Doch wie komm ich dann einen Schritt weiter als (1)?

Bezug
                
Bezug
Formelvereinfachung beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:23 Do 08.06.2006
Autor: leduart

Hallo slimane
sin(2x)=1/2*sinx*cosx das im Quadrat, da du die ja schon hat, fast alles kürzt sich bleibt das Quadrat deines Ergebnisses.
Woher kommst du auf die Vermutungen? Sind das Aufgaben?
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]