Fourier-Transformation < Numerik < Hochschule < Mathe < Vorhilfe
|
Hallo Leute!
Bei folgender Aufgabe habe ich Probleme auf die geforderte Darstellung zu kommen:
Sei f das periodisch fortgesetzte Rechtecksignal zu
[mm] $\tilde{f}\left(t\right) [/mm] = 1$ für $0 [mm] \le [/mm] t < [mm] \pi$ [/mm] und [mm] $\tilde{f}\left(t\right) [/mm] = 0$ für [mm] $\pi \le [/mm] t < [mm] 2\pi$
[/mm]
Zeige: Die Koeffizienten [mm] $H_{2n}$ [/mm] der Fourier-Reihe sind gegeben durch
[mm]H_{2n}\left(t\right) = \frac{1}{2} + \frac{2}{\pi}\sum_{k=1}^{n}{\frac{\sin\left(2k-1\right)t}{2k-1}}[/mm]
Zur Lösung bin ich von der allgemeinen Definition der Fourier-Reihe ausgegangen(, die ich im Internet gefunden habe ):
[mm]\tilde{f}\left(t\right) \approx a_0 + \left(\sum_{k=1}^{n}{a_k\cos\left(kt\right)}\right) + \sum_{k=1}^{n}{b_k\sin\left(kt\right)}[/mm]
[mm]a_0 := \frac{1}{2\pi}\int\limits_{-\pi}^{\pi}{\tilde{f}\left(t\right)\mathrm{d}t}[/mm]
[mm]a_k := \frac{1}{\pi}\int\limits_{-\pi}^{\pi}{\tilde{f}\left(t\right)\cos\left(kt\right)\mathrm{d}t}[/mm] für $k > 0$
[mm]b_k := \frac{1}{\pi}\int\limits_{-\pi}^{\pi}{\tilde{f}\left(t\right)\sin\left(kt\right)\mathrm{d}t}[/mm] für $k > 0$
Da [mm] $\tilde{f}$ [/mm] auf [mm] $\left[0,2\pi\right)$ [/mm] definiert ist, dachte ich mir, ich könnte die obigen Formeln für die Koeffizienten nehmen, und dann von $0$ bis [mm] $2\pi$ [/mm] integrieren:
[mm] $a_0 [/mm] = [mm] \frac{1}{2\pi}\left(\int\limits_{0}^{\pi}{1\mathrm{d}t} + \int\limits_{\pi}^{2\pi}{0\mathrm{d}t}\right) [/mm] = [mm] \frac{1}{2\pi}\left[t\right]_0^{\pi} [/mm] = [mm] \frac{1}{2}$
[/mm]
Es gelten folgende Beziehungen:
[mm]\frac{\partial}{\partial t}\sin\left(kt\right) \mathop = ^{\begin{subarray}{c}\textrm{Kettenregel}\end{subarray}} k\cos\left(kt\right) \Leftrightarrow \int{\cos\left(kt\right)\mathrm{d}t} \mathop = ^{\begin{subarray}{c}{\color{red}\left[1\right]}\end{subarray}} \frac{\sin\left(kt\right)}{k}[/mm]
[mm]\frac{\partial}{\partial t}\cos\left(kt\right) = -k\sin\left(kt\right) \Leftrightarrow \int{\sin\left(kt\right)\mathrm{d}t} \mathop = ^{\begin{subarray}{c}{\color{green}\left[2\right]}\end{subarray}} -\frac{\cos\left(kt\right)}{k}[/mm]
Jetzt können wir die geschlossenen Formen für [mm] $a_k$ [/mm] und [mm] $b_k$ [/mm] ermitteln:
[mm]a_k = \frac{1}{\pi}\int\limits_0^{\pi}{\cos\left(kt\right)\mathrm{d}t} \mathop = ^{\begin{subarray}{c}\left[1\right]\end{subarray}} \frac{\sin\left(k\pi\right)}{k\pi} = 0[/mm], da $k [mm] \in \mathbb{N}$ [/mm] nach Vorraussetzung.
[mm]b_k = \frac{1}{\pi}\int\limits_0^{\pi}{\sin\left(kt\right)\mathrm{d}t} \mathop = ^{\begin{subarray}{c}\left[2\right]\end{subarray}} -\frac{1}{k\pi}\left[\cos\left(kt\right)\right]_0^{\pi} = -\frac{1}{k\pi}\left(\cos\left(k\pi\right)-1\right) = \frac{1}{k\pi}\left(1-\cos\left(k\pi\right)\right)[/mm]
[mm] $\cos\left(k\pi\right) [/mm] $ ist 1, falls k gerade ist, ansonsten -1. Also formal:
[mm] $\cos\left(k\pi\right) [/mm] = [mm] \left(-1\right)^k$
[/mm]
Wir setzen die Koeffizienten [mm] $a_0$, $a_k$ [/mm] und [mm] $b_k$ [/mm] in unsere obige Summendarstellung ein:
[mm]\tilde{f}\left(t\right) \approx \frac{1}{2} + \frac{1}{\pi}\sum_{k=1}^{n}{\frac{1}{k}\left(1-\left(-1\right)^k\right)\sin\left(kt\right)}[/mm]
Ja... und ab hier bin ich leider nicht mehr weitergekommen.
Ich habe es mit einigen Additionstheoremen für Sinus und Kosinus versucht, und dann mit der komplexen Darstellung von Sinus und Kosinus, aber irgendwie komme ich nicht auf die geforderte Darstellung. Wäre schön, wenn mir jemand an dieser Stelle weiterhelfen könnte. Vielen Dank!
Grüße
Karl
|
|
|
|
Hallo Karl,
Eigentlich bist Du ja schon fast fertig. Nur etwas zu kompliziert gedacht. Das was Du bisher ausgerechnet hast dürfte [mm] H_n [/mm] sein. In der Aufgabe steht aber [mm] H_{2n} [/mm] Da wurden einfach ein paar Summanden weggelassen.
Alles klar?
viele Grüße
mathemaduenn
|
|
|
|