www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Fourier-Transformation" - Fourierreihe
Fourierreihe < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fourierreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:38 So 27.05.2012
Autor: handballer1988

Aufgabe
Man berechne die Fourierreihe der Funktion

[mm] f(x)=\begin{cases} \pi, & \mbox{für } -\pi \le x < 0 \\ \pi+k*x, & \mbox{für } 0 \le x \le \pi \end{cases}, f_{(x\pm2*\pi} [/mm] = [mm] f_{(x)}, [/mm] k [mm] \in \IR [/mm]

Guten Abend!

Bei diesem Beispiel bin ich eigentlich schon relativ weit gekommen, und wollte nun fragen, ob jemand meine Rechnung kontrollieren könnte, da ich einfach nicht auf das Ergebniss der Lösung komme....

Also, zu meinen Schritten:

Da die Funktion weder gerade noch ungerade ist, werden von vorne weg keine Koeffizienten zu 0, d.H.: ich muss alle berechnen!

[mm] a_{0}=\bruch{1}{\pi}*\integral_{-\pi}^{\pi}{f(x) dx} [/mm] = [mm] \bruch{1}{\pi}*\integral_{-\pi}^{0}{\pi dx}+\bruch{1}{\pi}*\integral_{0}^{\pi}{(\pi+k*x)dx} [/mm]

[mm] a_{0}=\bruch{(k+4)*\pi}{2} [/mm]

[mm] a_{k}=\bruch{1}{\pi}*\integral_{-\pi}^{\pi}{f(x)*cos(k*x) dx} [/mm] = [mm] \bruch{1}{\pi}*\integral_{-\pi}^{0}{\pi * cos(k*x) dx} [/mm] + [mm] \bruch{1}{\pi}*\integral_{0}^{\pi}{(\pi+k*x)*cos(k*x) dx} [/mm]

[mm] a_{k} [/mm] = [mm] \bruch{cos(k*\pi)}{k*\pi} [/mm] + [mm] \bruch{2*sin(k*\pi)}{k} [/mm] + [mm] sin(k*\pi)- \bruch{1}{k*\pi} [/mm]

[mm] b_{k}=\bruch{1}{\pi}*\integral_{-\pi}^{\pi}{f(x)*sin(k*x) dx} [/mm] = [mm] \bruch{1}{\pi}*\integral_{-\pi}^{0}{\pi * sin(k*x) dx} [/mm] + [mm] \bruch{1}{\pi}*\integral_{0}^{\pi}{(\pi+k*x)*sin(k*x) dx} [/mm]

[mm] b_{k} [/mm] = [mm] \bruch{sin(k*\pi)}{k*\pi} [/mm] - [mm] cos(k*\pi) [/mm]

Soweit so gut! Stimmt das alles bis hier her??

Nun lautet die Formel für die Fourierreihe ja:

[mm] S_{x} [/mm] = [mm] \bruch{a_{0}}{2}+\summe_{k=1}^{\infty} a_{k} [/mm] cos(k*x)+ [mm] \summe_{k=1}^{\infty} b_{k} [/mm] sin(k*x)

eingesetzt:

[mm] S_{x} [/mm] = [mm] \bruch{(k+4)*\pi}{4}+\summe_{k=1}^{\infty} (\bruch{cos(k*\pi)}{k*\pi} [/mm] + [mm] \bruch{2*sin(k*\pi)}{k} [/mm] + [mm] sin(k*\pi)- \bruch{1}{k*\pi})*cos(k*x) [/mm] + [mm] +\summe_{k=1}^{\infty} (\bruch{sin(k*\pi)}{k*\pi} [/mm] - [mm] cos(k*\pi))*sin(k*x). [/mm]

Das wäre mal meine Lösung!

Lt. Professor sollte man zu folgendem Ergebnis kommen:

[mm] S_{x} [/mm] = [mm] \bruch{(k+4)*\pi}{4}+(\bruch{2*k}{\pi})\summe_{n=1}^{\infty} \bruch{cos(2n-1)*x}{(2n-1)^{2}} [/mm] + k [mm] \summe_{n=1}^{\infty} \bruch{(-1)^{n+1} sin(nx)}{n} [/mm]

Kann mir nun bitte jemand sagen, ob:

- meine Lösung stimmt,
- die zweite Lösung stimmt,
- wo ich einen Fehler gemacht habe,
- bzw. wie man die Fallunterscheidung für gerade und ungerade Koeffizienten (k) macht!


Vielen vielen Dank für eure Hilfe!!

Schönen Abend!


        
Bezug
Fourierreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 21:03 So 27.05.2012
Autor: MathePower

Hallo handballer1988,

> Man berechne die Fourierreihe der Funktion
>  
> [mm]f(x)=\begin{cases} \pi, & \mbox{für } -\pi \le x < 0 \\ \pi+k*x, & \mbox{für } 0 \le x \le \pi \end{cases}, f_{(x\pm2*\pi}[/mm]
> = [mm]f_{(x)},[/mm] k [mm]\in \IR[/mm]
>  Guten Abend!
>  
> Bei diesem Beispiel bin ich eigentlich schon relativ weit
> gekommen, und wollte nun fragen, ob jemand meine Rechnung
> kontrollieren könnte, da ich einfach nicht auf das
> Ergebniss der Lösung komme....
>  
> Also, zu meinen Schritten:
>  
> Da die Funktion weder gerade noch ungerade ist, werden von
> vorne weg keine Koeffizienten zu 0, d.H.: ich muss alle
> berechnen!
>  
> [mm]a_{0}=\bruch{1}{\pi}*\integral_{-\pi}^{\pi}{f(x) dx}[/mm] =
> [mm]\bruch{1}{\pi}*\integral_{-\pi}^{0}{\pi dx}+\bruch{1}{\pi}*\integral_{0}^{\pi}{(\pi+k*x)dx}[/mm]
>  
> [mm]a_{0}=\bruch{(k+4)*\pi}{2}[/mm]
>  
> [mm]a_{k}=\bruch{1}{\pi}*\integral_{-\pi}^{\pi}{f(x)*cos(k*x) dx}[/mm]
> = [mm]\bruch{1}{\pi}*\integral_{-\pi}^{0}{\pi * cos(k*x) dx}[/mm] +
> [mm]\bruch{1}{\pi}*\integral_{0}^{\pi}{(\pi+k*x)*cos(k*x) dx}[/mm]
>  
> [mm]a_{k}[/mm] = [mm]\bruch{cos(k*\pi)}{k*\pi}[/mm] + [mm]\bruch{2*sin(k*\pi)}{k}[/mm]
> + [mm]sin(k*\pi)- \bruch{1}{k*\pi}[/mm]
>  
> [mm]b_{k}=\bruch{1}{\pi}*\integral_{-\pi}^{\pi}{f(x)*sin(k*x) dx}[/mm]
> = [mm]\bruch{1}{\pi}*\integral_{-\pi}^{0}{\pi * sin(k*x) dx}[/mm] +
> [mm]\bruch{1}{\pi}*\integral_{0}^{\pi}{(\pi+k*x)*sin(k*x) dx}[/mm]
>  
> [mm]b_{k}[/mm] = [mm]\bruch{sin(k*\pi)}{k*\pi}[/mm] - [mm]cos(k*\pi)[/mm]
>  
> Soweit so gut! Stimmt das alles bis hier her??
>  
> Nun lautet die Formel für die Fourierreihe ja:
>  
> [mm]S_{x}[/mm] = [mm]\bruch{a_{0}}{2}+\summe_{k=1}^{\infty} a_{k}[/mm]
> cos(k*x)+ [mm]\summe_{k=1}^{\infty} b_{k}[/mm] sin(k*x)
>  
> eingesetzt:
>  
> [mm]S_{x}[/mm] = [mm]\bruch{(k+4)*\pi}{4}+\summe_{k=1}^{\infty} (\bruch{cos(k*\pi)}{k*\pi}[/mm]
> + [mm]\bruch{2*sin(k*\pi)}{k}[/mm] + [mm]sin(k*\pi)- \bruch{1}{k*\pi})*cos(k*x)[/mm]
> + [mm]+\summe_{k=1}^{\infty} (\bruch{sin(k*\pi)}{k*\pi}[/mm] -
> [mm]cos(k*\pi))*sin(k*x).[/mm]
>  
> Das wäre mal meine Lösung!
>  


Die Lösung stimmt soweit.


> Lt. Professor sollte man zu folgendem Ergebnis kommen:
>  
> [mm]S_{x}[/mm] =
> [mm]\bruch{(k+4)*\pi}{4}+(\bruch{2*k}{\pi})\summe_{n=1}^{\infty} \bruch{cos(2n-1)*x}{(2n-1)^{2}}[/mm]
> + k [mm]\summe_{n=1}^{\infty} \bruch{(-1)^{n+1} sin(nx)}{n}[/mm]
>  
> Kann mir nun bitte jemand sagen, ob:
>  
> - meine Lösung stimmt,
>  - die zweite Lösung stimmt,


Bei der Lösung des Profs wurde eine Fallunterscheidung
hinsichtlich des Koeffizienten [mm]a_{k}[/mm] gemacht.




>  - wo ich einen Fehler gemacht habe,


Fehler hast Du keinen gemacht.


> - bzw. wie man die Fallunterscheidung für gerade und
> ungerade Koeffizienten (k) macht!
>  


Einsetzen und schauen, was sich ergibt.


>
> Vielen vielen Dank für eure Hilfe!!
>  
> Schönen Abend!

>


Gruss
MathePower  

Bezug
                
Bezug
Fourierreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:34 So 27.05.2012
Autor: handballer1988

Hallo!

Vielen Dank! Nun kann ich den Abend beruhigt genießen!

Eine Frage noch:

Könntest du mir in groben Zügen erklären, wie das mit der Fallunterscheidung zwischen geraden und ungeraden Koeffizienten funktioniert.

Wie man z.B.: von [mm] \summe_{k=1}^{\infty} (\bruch{cos(k\cdot{}\pi)}{k\cdot{}\pi} [/mm] +  [mm] \bruch{2\cdot{}sin(k\cdot{}\pi)}{k} [/mm] + [mm] sin(k\cdot{}\pi)- \bruch{1}{k\cdot{}\pi})\cdot{}cos(k\cdot{}x) [/mm] auf [mm] (\bruch{2\cdot{}k}{\pi})\summe_{n=1}^{\infty} \bruch{cos(2n-1)\cdot{}x}{(2n-1)^{2}} [/mm]

oder wie man von  [mm] \summe_{k=1}^{\infty} (\bruch{sin(k\cdot{}\pi)}{k\cdot{}\pi} -cos(k\cdot{}\pi))\cdot{}sin(k\cdot{}x) [/mm] auf k [mm] \summe_{n=1}^{\infty} \bruch{(-1)^{n+1} sin(nx)}{n} [/mm] kommt!

Hätte mir die Frage gerne selbst beantwortet, nur leider finde ich weder in meinem Skript noch im Internet irgendwelche wertvollen Hinweise!

Danke für deine Hilfe!

Schönen Abend noch,

lg


Bezug
                        
Bezug
Fourierreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 21:47 So 27.05.2012
Autor: MathePower

Hallo handballer1988,

> Hallo!
>  
> Vielen Dank! Nun kann ich den Abend beruhigt genießen!
>  
> Eine Frage noch:
>  
> Könntest du mir in groben Zügen erklären, wie das mit
> der Fallunterscheidung zwischen geraden und ungeraden
> Koeffizienten funktioniert.
>  
> Wie man z.B.: von [mm]\summe_{k=1}^{\infty} (\bruch{cos(k\cdot{}\pi)}{k\cdot{}\pi}[/mm]
> +  [mm]\bruch{2\cdot{}sin(k\cdot{}\pi)}{k}[/mm] + [mm]sin(k\cdot{}\pi)- \bruch{1}{k\cdot{}\pi})\cdot{}cos(k\cdot{}x)[/mm]
> auf [mm](\bruch{2\cdot{}k}{\pi})\summe_{n=1}^{\infty} \bruch{cos(2n-1)\cdot{}x}{(2n-1)^{2}}[/mm]
>
> oder wie man von  [mm]\summe_{k=1}^{\infty} (\bruch{sin(k\cdot{}\pi)}{k\cdot{}\pi} -cos(k\cdot{}\pi))\cdot{}sin(k\cdot{}x)[/mm]
> auf k [mm]\summe_{n=1}^{\infty} \bruch{(-1)^{n+1} sin(nx)}{n}[/mm]
> kommt!
>  


Zunächst ist [mm]\sin\left(k*\pi\right)=0, \ k \in \IZ[/mm]

Damit vereinfachen sich die genannten Ausrdücke:

[mm]\summe_{k=1}^{\infty} (\bruch{cos(k\cdot{}\pi)}{k\cdot{}\pi}- \bruch{1}{k\cdot{}\pi})\cdot{}cos(k\cdot{}x)[/mm]

bzw.

[mm]\summe_{k=1}^{\infty} ( \ -cos(k\cdot{}\pi) \ )\cdot{}sin(k\cdot{}x)[/mm]

Dann gilt [mm]\cos\left(k*\pi\right)=\left(-1\right)^{k}, \ k \in \IZ[/mm]

Damit kannst Du die Fallunterscheidung zu Ende bringen.


> Hätte mir die Frage gerne selbst beantwortet, nur leider
> finde ich weder in meinem Skript noch im Internet
> irgendwelche wertvollen Hinweise!
>  
> Danke für deine Hilfe!
>  
> Schönen Abend noch,
>  
> lg

>


Gruss
MathePower  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]