www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Fourierreihe -> Integralprobl.
Fourierreihe -> Integralprobl. < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fourierreihe -> Integralprobl.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:36 Mo 06.10.2008
Autor: tobe

Aufgabe
Setzen Sie die auf dem Intervall [0; 1) de nierte Funktion f(x) = x zunachst gerade auf [1; 1) und dann periodisch auf ganz R fort. Entwickeln Sie die so erhaltene Funktion in eine Fourierreihe.

Um die Fourierreihe aufzustellen benötige ich ja zuerst die Fourierkoeffizienten! Da f(x)= ungerade ist, weiss ich dass [mm] a_{0}, a_{1}...a_{n}=0 [/mm] sind.

Die anderen koeffizienten errechnen sich ja durch:
[mm] b_{n}=2/periode \integral_{0}^{periode}{f(x) sin \bruch{2\pi}{periode}nxdx} [/mm]

In meinem Fall wäre die periode doch 1 also ergibt sich für [mm] b_{n} [/mm] folgendes:
[mm] b_{n}=2 \integral_{0}^{1}{x sin(2\pi}nx)dx [/mm]

Und genau hier ensteht bei den Fourierreihen immer mein Problem. Ich schaffe es einfach nicht das Integral sinnvoll zu lösen um die Koeffizienten raus zu bekommen!
Also wir geht ihr denn auf das Integral los?

Lg Tobias

        
Bezug
Fourierreihe -> Integralprobl.: Antwort
Status: (Antwort) fertig Status 
Datum: 12:43 Mo 06.10.2008
Autor: fred97


> Setzen Sie die auf dem Intervall [0; 1) de nierte Funktion
> f(x) = x zunachst gerade auf [1; 1) und dann periodisch auf
> ganz R fort. Entwickeln Sie die so erhaltene Funktion in
> eine Fourierreihe.
>  Um die Fourierreihe aufzustellen benötige ich ja zuerst
> die Fourierkoeffizienten! Da f(x)= ungerade ist, weiss ich
> dass [mm]a_{0}, a_{1}...a_{n}=0[/mm] sind.
>  
> Die anderen koeffizienten errechnen sich ja durch:
>  [mm]b_{n}=2/periode \integral_{0}^{periode}{f(x) sin \bruch{2\pi}{periode}nxdx}[/mm]
>  
> In meinem Fall wäre die periode doch 1 also ergibt sich für
> [mm]b_{n}[/mm] folgendes:
>  [mm]b_{n}=2 \integral_{0}^{1}{x sin(2\pi}nx)dx[/mm]
>  
> Und genau hier ensteht bei den Fourierreihen immer mein
> Problem. Ich schaffe es einfach nicht das Integral sinnvoll
> zu lösen um die Koeffizienten raus zu bekommen!
>  Also wir geht ihr denn auf das Integral los?
>  
> Lg Tobias





Wie wärs mit partieller Integration ?


fred

Bezug
                
Bezug
Fourierreihe -> Integralprobl.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:03 Mo 06.10.2008
Autor: tobe

Danke für die Antwort.
Zum Glück bin ich vorher noch von selbst drauf gekommen. Wenn man nicht in der Übung ist, übersieht man echt die einfachsten Dinge.

Hier meine Lösung: (es wäre schön wenn sie jmd. bestätigen könnte)

$ [mm] b_{n}=2 \integral_{0}^{1}{x sin(2\pi}nx)dx [/mm] $ = [mm] 2[\bruch{-cos(2\pi n)}{2\pi n} [/mm] - [mm] \integral_{0}^{1}{ \bruch{-cos(2\pi nx)}{2\pi n}dx}] [/mm] = [mm] 2[\bruch{-cos(2\pi n)}{2\pi n}+\bruch{sin(2\pi n)}{4\pi^{2} n^{2}}] [/mm]

Passt das?

Lg Tobi

Bezug
                        
Bezug
Fourierreihe -> Integralprobl.: Antwort
Status: (Antwort) fertig Status 
Datum: 13:56 Mo 06.10.2008
Autor: fred97


> Danke für die Antwort.
>  Zum Glück bin ich vorher noch von selbst drauf gekommen.
> Wenn man nicht in der Übung ist, übersieht man echt die
> einfachsten Dinge.
>  
> Hier meine Lösung: (es wäre schön wenn sie jmd. bestätigen
> könnte)
>  
> [mm]b_{n}=2 \integral_{0}^{1}{x sin(2\pi}nx)dx[/mm] =
> [mm]2[\bruch{-cos(2\pi n)}{2\pi n}[/mm] - [mm]\integral_{0}^{1}{ \bruch{-cos(2\pi nx)}{2\pi n}dx}][/mm]
> = [mm]2[\bruch{-cos(2\pi n)}{2\pi n}+\bruch{sin(2\pi n)}{4\pi^{2} n^{2}}][/mm]
>  
> Passt das?
>  
> Lg Tobi

Ja, was ist

[mm] cos(2\pi [/mm] n) =  ??  und [mm] sin(2\pi [/mm] n) = ??

FRED  



Bezug
                                
Bezug
Fourierreihe -> Integralprobl.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:21 Mo 06.10.2008
Autor: tobe

[mm] sin(2\pi [/mm] n) ist halt immer 0 und der [mm] cos(2\pi [/mm] n)=1
-> [mm] \bruch{-1}{\pi n} [/mm]

D.h. für meine Fourierkoeffizinten:
[mm] b_{0}!! [/mm]
[mm] b_{1}=\bruch{-1}{1\pi} [/mm]
[mm] b_{2}=\bruch{-1}{2\pi} [/mm]
[mm] b_{3}=\bruch{-1}{3\pi} [/mm]
[mm] b_{4}=\bruch{-1}{4\pi} [/mm]

Und somit schaut die Fourierreihe folgendermaßen aus:
[mm] \bruch{-1}{1\pi}sin2\pi [/mm] x + [mm] \bruch{-1}{2\pi}sin2\pi [/mm] 2x + [mm] \bruch{-1}{3\pi}sin2\pi3 [/mm] x...

Ich hoffe das passt so. ich bin mir auch nicht so ganz sicher was die periode ist. Ich denke aber doch 1!

Danke

Bezug
                                        
Bezug
Fourierreihe -> Integralprobl.: Antwort
Status: (Antwort) fertig Status 
Datum: 15:10 Mo 06.10.2008
Autor: Zorba

Ja die Periode ist 1.Die Funktion f(x) =x wiederholt sich ja immer nach einem Intervall der Länge 1

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]