www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Frage
Frage < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Frage: lineare Abbildungen
Status: (Frage) beantwortet Status 
Datum: 23:44 Do 13.01.2005
Autor: VHN

Hallo, an alle! :-)

Ich habe versucht eine Aufgabe zu lösen, bin mir aber nicht sicher, ob sie stimmt. Vielleicht könnt ihr mir weiterhelfen. Vielen Dank schon mal im Voraus!

Das ist die Aufgabe:

Sei K ein Körper und sei V ein K-Vektorraum. Weiter sei n [mm] \ge [/mm] 1.
(a) Seien [mm] f_{i} [/mm] : V [mm] \to [/mm] K lineare Abbildungen für 1 [mm] \le [/mm] i [mm] \le [/mm] n.
Für x [mm] \in [/mm] V sei g(x) = [mm] (f_{1}(x), [/mm] ..., [mm] f_{n}(x)). [/mm]
Zeige, dass g : V [mm] \to K^{n} [/mm] eine lineare Abbildung ist.

(b) Sei g : V [mm] \to K^{n} [/mm] linear. Für x [mm] \in [/mm] V definieren wir [mm] f_{1}(x), [/mm] ..., [mm] f_{n}(x) [/mm] durch:
[mm] (f_{1}(x), [/mm] ..., [mm] f_{n}(x)) [/mm] = g(x) .
Zeige, dass die Funktionen [mm] f_{i} [/mm] : V [mm] \to [/mm] K linear sind für alle 1 [mm] \le [/mm] i [mm] \le [/mm] n.

Ich gebe erstmal die allgemeine Definition von "Linearen Abbildungen" an, wie wir sie in der Vorlesung gelernt haben:

Seien V, W K-Vektorräume; f : V [mm] \to [/mm] W Abbildung.
f heißt linear, wenn für alle x, y [mm] \in [/mm] V,  [mm] \alpha \in [/mm] K, gilt:
(1) f(x+y) = f(x) + f(y)
(2) [mm] f(\alpha [/mm] x) = [mm] \alpha [/mm] f(x)

So, und das hier ist meine Lösung:

Zu (a):

(1a) g(x+y) = g(x) + g(y) (zu zeigen)

g(x+y) = [mm] (f_{1}(x+y), [/mm] ..., [mm] f_{n}(x+y)) [/mm] = [mm] (f_{i} (x+y))_{1 \le i \le n} [/mm]

Da ja [mm] f_{i} [/mm] : V [mm] \to [/mm] K eine lineare Abbildung ist, gilt also:
[mm] (f_{i} (x+y))_{1 \le i \le n} [/mm] = [mm] (f_{i} (x))_{1 \le i \le n} [/mm] + [mm] (f_{i} (y))_{1 \le i \le n} [/mm]

Also: g(x+y) = [mm] (f_{i} (x))_{1 \le i \le n} [/mm] + [mm] (f_{i} (y))_{1 \le i \le n} [/mm]
= g(x) + g(y)

(2a) [mm] g(\alpha [/mm] x) = [mm] \alpha [/mm] g(x)  (zu zeigen)

[mm] g(\alpha [/mm] x)  = [mm] (f_{1}(\alpha [/mm] x), ..., [mm] f_{n}(\alpha [/mm] x)) = [mm] (f_{i} (\alpha x))_{1 \le i \le n} [/mm]

Da ja [mm] f_{i} [/mm] : V [mm] \to [/mm] K eine lineare Abbildung ist, gilt also:
[mm] (f_{i} (\alpha x))_{1 \le i \le n} [/mm] = [mm] \alpha (f_{i} (x))_{1 \le i \le n} [/mm]

Also: [mm] g(\alpha [/mm] x) = [mm] \alpha (f_{i} (x))_{1 \le i \le n} [/mm]
= [mm] \alpha [/mm] g(x)

Ist das so richtig bis jetzt?

Die Teilaufgabe (b) habe ich genauso analog gemacht.
Ich weiß aber nicht, ob das stimmt, weil ich mir nicht vorstellen kann, dass das so einfach ist. Da ist doch bestimmt ein Haken, oder? :-)

Hoffe, ihr könnt mir helfen! Vielen Dank!
Gute Nacht!
Ciao!







        
Bezug
Frage: Antwort
Status: (Antwort) fertig Status 
Datum: 00:25 Fr 14.01.2005
Autor: Paulus

Hallo VHN

nein, da ist kein Haken.

Diese Beweise "Zeige, dass ... eine Gruppe ist", "Zeige, dass ... ein Körper ist" und so weiter sind so einfach, weil ja immer nur die Axiome verifiziert werden müssen. Weil der Verktorraum nicht gerade viele Axiome hat, ist das halt eben so kurz.

Vielleicht hätte man jeweils beim letzten Gleichheitszeichen noch begründen können: ... weil [mm] $K^n$ [/mm] ein Vektorraum ist.

Ist aber nur ein Detail, und evtl. gar nicht nötig, weil ihr das schon des Langen und Breiten bewiesen habt. ;-)

Mit lieben Grüssen

Paul

Bezug
                
Bezug
Frage: Nachtrag/Zusatz/Korrektur/Ergä
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:45 Fr 14.01.2005
Autor: Paulus

Hallo VHN

Ich hab noch ganz vergessen:

Ein Vektorraum ist ja definiert als Abelsche Gruppe mit den angeführten Linearitätseigenschaften.

Aus diesem Grunde musst du auch noch zeigen, dass jedes Element (hier eine Funktion) ein additiv Inverses hat, und auch ein Null-Element ist zu suchen (und zu finden!). :-)

Mit lieben Grüssen

Paul

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]