Frage zur Ableitung < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 09:56 Mi 23.07.2008 | Autor: | Surfer |
Hallo wenn ich folgendes ableiten soll:
f(x) = [mm] \bruch{(-3x)^{k}}{k}
[/mm]
erhalte ich doch:
f´(x) = [mm] \bruch{k(-3)^{k}*x^{k-1}}{k} [/mm] oder wie leite ich dies am besten ab?
und wie bringe ich diesen Ausdruck dann in einen geschlossenen Ausdruck?
lg Surfer
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:01 Mi 23.07.2008 | Autor: | fred97 |
Du hast richtig gerechnet. k kannst Du noch kürzen:
f´(x) = $ [mm] \bruch{k(-3)^{k}\cdot{}x^{k-1}}{k} [/mm] $ = [mm] (-3)^kx^{k-1} [/mm] = [mm] -3(-3x)^{k-1}
[/mm]
FRED
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 10:15 Mi 23.07.2008 | Autor: | Surfer |
Ah ok und wie würde ich dies jetzt in einen geschlossenen Ausdruck bringen, sprich welcher Potenzreihe sieht das ähnlich?
damit ich auf [mm] -\bruch{3}{1+3x} [/mm] komme?
lg Surfer
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:19 Mi 23.07.2008 | Autor: | fred97 |
Ich ahne wohin die Sache gehen soll.
Gib bitte die ganze Aufgabenstellung wider.
FRED
|
|
|
|
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 10:30 Mi 23.07.2008 | Autor: | Surfer |
Sag mal hab ich dich im ersten Teil die Aufgabenstellung wider geben lassen? Ich hab dich lediglich korrigieren lassen!
Also wenn es lauter solche Leute geben würden, die keine Tips mehr geben und sich bei einer normalen Frage schon überfordert fühlen, dann kann man die ganzen Foren in denen man sich Tips erwartet oder ich zumindest erwarte mir Tips bei Aufgaben die mir nicht ganz klar sind, ansonsten kann man die Foren eigentlich zu machen!!!
lg Surfer
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 10:36 Mi 23.07.2008 | Autor: | abakus |
> Sag mal hab ich dich im ersten Teil die Aufgabenstellung
> wider geben lassen? Ich hab dich lediglich korrigieren
> lassen!
Welche Gnade!
>
> Also wenn es lauter solche Leute geben würden, die keine
> Tips mehr geben und sich bei einer normalen Frage schon
> überfordert fühlen, dann kann man die ganzen Foren in denen
> man sich Tips erwartet oder ich zumindest erwarte mir Tips
> bei Aufgaben die mir nicht ganz klar sind, ansonsten kann
> man die Foren eigentlich zu machen!!!
Das wird man wohl nicht tun.
Gruß Abakus
>
> lg Surfer
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 10:44 Mi 23.07.2008 | Autor: | fred97 |
Mein lieber Surfer,
in diesem Forum pflegt man einen freundlichen Umgangston, aber zu Deinem letzten Kommentar kann ich nur sagen:
Dir hat man mächtig ins Gehirn gesch....
In Deiner ursprünglichen Frage ging es um die Ableitung einer Funktion. Von einer Potenzreihe ( im Zusammenhang mit dieser Funktion ) war nicht die Rede. Das kam erst später , aber alles andere als klar formuliert.
Hellseher bin ich nicht.
Mit sehr unfreundlichen Grüßen
FRED
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:00 Mi 23.07.2008 | Autor: | Surfer |
Lesen sollte man können, denn bereits in der ersten Frage habe ich auch die Frage gestellt, diese Ableitung in einen geschlossenen Ausdruck zu bringen, also total unnötig dein Beitrag so eben, vielleicht sollte dein Umganston in diesem Forum etwas freundlicher werden! Und vielleicht das nächste mal richtig lesen, bevor man seinen Senf dazu gibt!
Mfg Surfer
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:02 Mi 23.07.2008 | Autor: | fred97 |
Jetzt reichts !
ist das $ [mm] -3(-3x)^{k-1} [/mm] $ kein geschlossener Ausdruck ?
|
|
|
|
|
> Sag mal hab ich dich im ersten Teil die Aufgabenstellung
> wider geben lassen? Ich hab dich lediglich korrigieren
> lassen!
>
> Also wenn es lauter solche Leute geben würden, die keine
> Tips mehr geben und sich bei einer normalen Frage schon
> überfordert fühlen, dann kann man die ganzen Foren in denen
> man sich Tips erwartet oder ich zumindest erwarte mir Tips
> bei Aufgaben die mir nicht ganz klar sind, ansonsten kann
> man die Foren eigentlich zu machen!!!
Hallo,
und einen Moment mal bitte:
so geht das nicht, und ich bitte Dich im Namen des Teams um einen angemessenen Umgangston.
Freds Frage nach der Aufgabenstellung ist doch ganz natürlich. Jeder hätte hier nachgefragt, und es ist Deine Reaktion darauf völlig unverständlich.
In Deiner geposteten Aufgabenstellung kommt keine Silbe von Potenzreihe vor, und "geschlossener Ausdruck" hat mit Potenzreihe nicht besonders viel zu tun.
Wir helfen hier wirklich gerne und teilweise recht ausdauernd, aber wenn man die Aufgabenstellung auch noch raten soll, wird's etwas arg...
Gruß v. Angela
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:46 Mi 23.07.2008 | Autor: | fred97 |
Für den Rest der Gemeinschaft (wen es interessiert):
Es gilt (geometrische Reihe)
[mm] \summe_{k=1}^{\infty} (-3(-3x)^{k-1}) [/mm] = $ [mm] -\bruch{3}{1+3x} [/mm] $
für |x|<1/3
FRED
|
|
|
|