www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Funktion auflösen
Funktion auflösen < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktion auflösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:32 So 16.03.2008
Autor: seox

Aufgabe
[y/(y-1)] - [y/x]² = (y/x+1)

Wie kann ich diese Funktion nach Y auflösen???
Komme einfach nicht drauf....
Gruß...



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Funktion auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:50 So 16.03.2008
Autor: MathePower

Hallo seox,

[willkommenmr]

> [y/(y-1)] - [y/x]² = (y/x+1)

Lautet die Gleichung so

[mm]\bruch{y}{y-1}-\left(\bruch{y}{x}\right)^{2}=\bruch{y}{x+1}[/mm]

oder  so

[mm]\bruch{y}{y-1}-\left(\bruch{y}{x}\right)^{2}=\bruch{y}{x}+1[/mm]

?

>  Wie kann ich diese Funktion nach Y auflösen???

Multipliziere erstmal mit dem Hauptnenner durch, Ordne den entstehenden Ausdruck nach Potenzen von y und löse dann diese Gleichung auf.

>  Komme einfach nicht drauf....
>  Gruß...
>  
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß
MathePower

Bezug
        
Bezug
Funktion auflösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:42 Mo 17.03.2008
Autor: seox

Die Funktion lautet

$ [mm] \bruch{y}{y-1}-\left(\bruch{y}{x}\right)^{2}=\bruch{y}{x+1} [/mm] $

Bezug
                
Bezug
Funktion auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:57 Mo 17.03.2008
Autor: XPatrickX

Hi!

> Die Funktion lautet
>
> [mm]\bruch{y}{y-1}-\left(\bruch{y}{x}\right)^{2}=\bruch{y}{x+1}[/mm]

= [mm] \bruch{y}{y-1}-\bruch{y^2}{x^2}-\bruch{y}{x+1}=0 [/mm]

Multipliziere jetzt die komplette Gleichung mit (y-1), [mm] x^2 [/mm] und (x+1) durch, damit alle Brüche verschwinden.
Dann sehen wir weiter.

Gruß Patrick

Bezug
                        
Bezug
Funktion auflösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:36 Mo 17.03.2008
Autor: seox

hm ja wenn ich das multipliziere steht da:

yx² (x+1) - y² (y-1)(x+1) - y(y-1)x²  =  0

daraufhin habe ich das aus multipliziert:

yx³ + yx² - yx² - y³x + y³ - y²x - y² - y²x² = 0

der Therm yx² fällt weg. Ich würde den ganzen krempel jetzt durch Y teilen...

x³ - y²x + y² - yx - y - yx² = 0

Allerdings komme ich dann nicht mehr weiter...  :(

Bezug
                                
Bezug
Funktion auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:05 Mo 17.03.2008
Autor: XPatrickX


> hm ja wenn ich das multipliziere steht da:
>  
> yx² (x+1) - y² (y-1)(x+1) - y(y-1)x²  =  0
>  
> daraufhin habe ich das aus multipliziert:
>  
> yx³ + yx² - yx² - y³x + y³ - y²x - y² - y²x² = 0


Ich erhalte etwas anderes:

[mm] $yx^3 [/mm] + [mm] yx^2 [/mm] - [mm] y^2(xy-x+y-1) [/mm] - [mm] y^2x^2 [/mm] + [mm] yx^2 [/mm] = 0$

[mm] $yx^3 [/mm] + [mm] yx^2 [/mm] - [mm] y^{3}x +y^{2}x [/mm] - [mm] y^3 [/mm] + [mm] y^2 [/mm] - [mm] y^{2}x^{2} [/mm] + [mm] yx^2 [/mm] = 0$

nun umgestellt:

[mm] $(1-x)y^3 [/mm] + [mm] (1+x-x^2)y^2 [/mm] + [mm] (2x^2+x^3)y [/mm] = 0 $



Jetzt kannst du ein y ausklammern und dann hast du anschließend nur noch eine quadratische Gleichung.
Allerdings dürfte es dann weiterhnin nicht so einfach werden diese zu lösen. Bist du sicher, dass du diese Aufgabe genau so lösen musst?



>  
> der Therm yx² fällt weg. Ich würde den ganzen krempel jetzt
> durch Y teilen...
>
> x³ - y²x + y² - yx - y - yx² = 0
>  
> Allerdings komme ich dann nicht mehr weiter...  :(


Bezug
                                        
Bezug
Funktion auflösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:18 Mo 17.03.2008
Autor: seox

Bin ich mir sicher, habe hier eine Musterklausur und Teilaufgabe a) ist die Gleichung nach y aufzulösen...

Vielen Dank schon mal :)

Bezug
                                                
Bezug
Funktion auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:48 Mo 17.03.2008
Autor: Zneques

Hallo,

Ich nehme mal XPatrickX's Gleichung :
[mm] yx^3+yx^2-y^{3}x+y^{2}x-y^3+y^2-y^{2}x^{2}+yx^2=0 [/mm]
[mm] \gdw (1-x)y^3+(1+x-x^2)y^2+(2x^2+x^3)y=0 [/mm]

Dann y ausklammern :
[mm] y*((1-x)y^2+(1+x-x^2)y+(2x^2+x^3))=0 \quad\Rightarrow [/mm] y=0 ist Lösung

und weitere Lösungen folgen aus :
[mm] (1-x)y^2+(1+x-x^2)y+(2x^2+x^3))=0 [/mm]
[mm] \gdw y^2+\bruch{(1+x-x^2)}{(1-x)}y+\bruch{(2x^2+x^3)}{(1-x)}=0 [/mm] , für [mm] 1-x\not=0 \gdw x\not=1 [/mm]
und (1+1-1)y+(2+1)=0 für x=1

Nun sieht die quadratische Gl. doch bekannter aus, oder ?
[mm] y_{1/2}=... [/mm]

Ciao.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]