Funktion mit zwei Integralen < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 16:58 Mo 07.04.2008 | Autor: | Anne_VWL |
Aufgabe | [mm] E_\theta (U_P) [/mm] = - [mm] (\integral_{0}^{a_1}{b^2 dF(\theta)} [/mm] + [mm] \integral_{a_1}^{1}{(a_1 + b - \theta)^2 dF(\theta)}) [/mm] |
Diese Funktion soll abgeleitet werden. Das genaua [mm] F(\theta) [/mm] ist nicht bekannt, es handelt sich um die kummulative Häufigkeitsverteilgung von [mm] \theta [/mm] .
Ich schaffe es nicht, diese Ableitung zu machen. Habe es mit partieller Ableitung versucht, bin aber nicht sehr weit gekommen.
Hat jemand eine Idee? Ich wäre sehr dankbar. Brauche es für meine Seminararbeit.
Gruß,
anne
P.S. Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:14 Mo 07.04.2008 | Autor: | rainerS |
Hallo anne!
Erstmal herzlich
> [mm]E_\theta (U_P)[/mm] = - [mm](\integral_{0}^{a_1}{b^2 dF(\theta)}+\integral_{a_1}^{1}{(a_1 + b - \theta)^2 dF(\theta)})[/mm]
>
> Diese Funktion soll abgeleitet werden. Das genaua [mm]F(\theta)[/mm]
> ist nicht bekannt, es handelt sich um die kummulative
> Häufigkeitsverteilgung von theta.
>
> Ich schaffe es nicht, diese Ableitung zu machen. Habe es
> mit partieller Ableitung versucht, bin aber nicht sehr weit
> gekommen.
> Hat jemand eine Idee? Ich wäre sehr dankbar. Brauche es
> für meine Seminararbeit.
Wonach soll denn abgeleitet werden, und was ist mit [mm] $U_P$ [/mm] gemeint?
Viele Grüße
Rainer
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:40 Di 08.04.2008 | Autor: | Anne_VWL |
OK, da hätte ich wohl etwas präziser sein sollen :)
U bedeutet, dass es sich um eine Nutzenfunktion handelt und mit E(U) berechnen wir den Erwartungswert des Nutzens.
Diesen wollen wir maximieren und das einzige, was wir beeinflussen können ist die Grenze a1.
Ich hatte vergessen zu schreiben: [mm] \max_{a_1} E_\theta(U_P) [/mm] = ...
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:00 Di 08.04.2008 | Autor: | rainerS |
Hallo anne!
> [mm]E_\theta (U_P)[/mm] = - [mm](\integral_{0}^{a_1}{b^2 dF(\theta)} + \integral_{a_1}^{1}{(a_1 + b - \theta)^2 dF(\theta)})[/mm]
>
> Diese Funktion soll abgeleitet werden. Das genaua [mm]F(\theta)[/mm]
> ist nicht bekannt, es handelt sich um die kummulative
> Häufigkeitsverteilgung von theta.
>
> Ich schaffe es nicht, diese Ableitung zu machen. Habe es
> mit partieller Ableitung versucht, bin aber nicht sehr weit
> gekommen.
Im Prinzip brauchst du nur diese beiden Beziehungen:
[mm] \bruch{d}{db} \integral_a^b f(x) \,dx = f(b) [/mm]
und
[mm] \bruch{d}{da} \integral_a^b f(a,x) \,dx = -f(a,a) + \integral_a^b \bruch{\partial f(a,x)}{\partial a} \, dx [/mm]
Die Sache wird nur dadurch etwas komplizierter, dass über das Wahrscheinlichkeitsmaß [mm] $F(\theta)$ [/mm] integriert wird.
An der ersten Identität ändert sich dadurch nichts.
Nehmen wir mal an, dass [mm] $F(\theta)$ [/mm] streng monoton wachsend und daher umkehrbar und außerdem differenzierbar ist.
Dann erhalten wir durch Substitution
[mm]\integral_{0}^{a_1}{b^2 dF(\theta)} = \integral_{-\infty}^{F^{-1}(a_1)} b^2 F'(\theta) d\theta [/mm]
Die Ableitung nach [mm] $a_1$ [/mm] ist nach der Kettenregel:
[mm] \bruch{d}{da_1} \integral_{-\infty}^{F^{-1}(a_1)} b^2 F'(\theta) d\theta = b^2 F'(F^{-1}(a_1)) * \bruch{dF^{-1}(a_1)}{da_1} [/mm].
Nach dem Satz über inverse Funktionen ist
[mm] \bruch{dF^{-1}(a_1)}{da_1} = \bruch{1}{F'(F^{-1}(a_1))} [/mm]
sodass einfach [mm] $b^2$ [/mm] herauskommt, was gerade der Integrand an der oberen Grenze ist.
Ebenso kannst du das zweite Integral angehen:
[mm] \integral_{a_1}^{1}{(a_1 + b - \theta)^2 dF(\theta)}) = \integral_{F^{-1}(a_1)}^{+\infty} (a_1 + b - \theta)^2 F'(\theta) d\theta [/mm]
und für die Ableitung folgt
[mm]\bruch{d}{da_1} \integral_{F^{-1}(a_1)}^{+\infty} (a_1 + b - \theta)^2 F'(\theta) d\theta
= -(a_1 + b -F^{-1}(a_1))^2 *F'(F^{-1}(a_1))*\bruch{dF^{-1}(a_1)}{da_1} + \integral_{F^{-1}(a_1)}^{+\infty} \bruch{d}{da_1}\left((a_1 + b - \theta)^2 \right) F'(\theta) d\theta [/mm]
[mm] = -(a_1 + b -F^{-1}(a_1))^2 *F'(F^{-1}(a_1))*\bruch{dF^{-1}(a_1)}{da_1} + 2 \integral_{F^{-1}(a_1)}^{+\infty} (a_1 + b - \theta) F'(\theta) d\theta = -(a_1 + b -F^{-1}(a_1))^2 +2 \integral_{a_1}^{1} (a_1 + b - \theta) dF(\theta)[/mm]
[mm] = -(a_1 + b -F^{-1}(a_1))^2 +2 (a_1+b) \integral_{a_1}^{1} dF(\theta) + 2 \integral_{a_1}^{1} \theta dF(\theta) = -(a_1 + b -F^{-1}(a_1))^2 +2 (a_1+b)(1-a_1) + 2 \integral_{a_1}^{1} \theta dF(\theta)[/mm]
Hier taucht die Ableitung von F nicht mehr auf. Wenn ich mich nicht irre, gilt die Aussage auch, wenn F nicht differenzierbar ist. Ich glaube, du brauchst aber die strenge Monotonie von F, weil [mm] $F^{-1}(a_1)$ [/mm] sonst nicht definiert ist.
Vielleicht kann ja jemand, dessen Maßtheorievorlesung nicht ganz so weit zurückliegt, nochmal drüberschauen. Ich lasse die Frage auf "halb beantwortet".
Viele Grüße
Rainer
|
|
|
|