Funktion zeichnen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:12 Fr 30.10.2009 | Autor: | tdk123 |
Aufgabe | Zeichne f(x) = [mm] (x+1)^{-1/4} [/mm] - 2 |
Hiho Leute. Hab grad mit der Aufgabe anfangen und will schauen wann die Funktion negativ ist und wann positiv. Hab dann die ungleichung aufgestellt. [mm] (x+1)^{-1/4} [/mm] > - 2 wenn das erfüllt ist, ist die funktion positiv. Vom gefühl her muss x aufjedenfall kleiner als 1 sein. Ich komm aber auf x > 15/16. wenn mach ( ) ^4 macht auf beiden seiten, muss man dann die vorzeichen umdrehen?
mfg lukas
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo tdk123,
> Zeichne f(x) = [mm](x+1)^{-1/4}[/mm] - 2
> Hiho Leute. Hab grad mit der Aufgabe anfangen und will
> schauen wann die Funktion negativ ist und wann positiv. Hab
> dann die ungleichung aufgestellt. [mm](x+1)^{-1/4}[/mm] > - 2 wenn
> das erfüllt ist, ist die funktion positiv. Vom gefühl her
> muss x aufjedenfall kleiner als 1 sein. Ich komm aber auf x
> > 15/16. wenn mach ( ) ^4 macht auf beiden seiten, muss man
> dann die vorzeichen umdrehen?
Nein.
Die Ungleichung, die Du hier zu betrachten hast, ist
[mm](x+1)^{-1/4} > \red{+} 2[/mm]
Oder umgeschrieben:
[mm]\bruch{1}{\wurzel[4]{x+1}} > 2[/mm]
Unzweifelhaft ist, daß x > -1 sein muss.
>
> mfg lukas
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
Gruss
MathePower
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:02 Fr 30.10.2009 | Autor: | tdk123 |
Hi danke für die antwort. dummer fehler.
Komme jetzt auf x > -15/16
aber das kann doch nicht stimmen oder? also der nenner [mm] (x+1)^{1/4} [/mm] muss doch zwischen kleiner als 0,5 und größer als 0 sein damit der ausdruck größer als 2 wird. da fehlt doch die begrenzung nach oben bei meinem ergebnis.
oder?
|
|
|
|
|
Hallo tdk123,
> Hi danke für die antwort. dummer fehler.
>
> Komme jetzt auf x > -15/16
Stimmt.
> aber das kann doch nicht stimmen oder? also der nenner
> [mm](x+1)^{1/4}[/mm] muss doch zwischen kleiner als 0,5 und größer
> als 0 sein damit der ausdruck größer als 2 wird. da fehlt
> doch die begrenzung nach oben bei meinem ergebnis.
> oder?
Aus [mm] x > -\bruch{15}{16}[/mm] folgt zunächst x+1 > [mm] \bruch{1}{16}.
[/mm]
Damit ist [mm]\left(x+1\right)^{1/4} > \bruch{1}{2}[/mm]
Daraus ergibt sich [mm]\left(x+1\right)^{-1/4} < 2[/mm]
Gruss
MathePower
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:31 Fr 30.10.2009 | Autor: | tdk123 |
Ich bin doch von [mm] (x+1)^{-1/4} [/mm] > 2 gestartet, wie kann ich da auf jetzt wenn ich zurückrechne auf < 2 kommen? wieso drehst du bei ( ) ^{-1} das größerzeichen um? verschrieben?
falls ja beantwortet das trotzdem nicht meine frage. x > - 15/16. das heißt der ausdruck müsste auch bei x = 100 positiv sein und das ist ja nicht der fall. ich steh wohl grad extrem auf dem schlauch.
|
|
|
|
|
Hallo tdk123,
> Ich bin doch von [mm](x+1)^{-1/4}[/mm] > 2 gestartet, wie kann ich
> da auf jetzt wenn ich zurückrechne auf < 2 kommen? wieso
> drehst du bei ( ) ^{-1} das größerzeichen um?
> verschrieben?
>
Aus [mm](x+1)^{-1/4} > 2[/mm] folgt durch Multiplikation mit [mm]\left(x+1\right)^{1/4}[/mm]:
[mm]1 > 2*\left(x+1\right)^{1/4}[/mm], da x+1 > 0
> falls ja beantwortet das trotzdem nicht meine frage. x > -
> 15/16. das heißt der ausdruck müsste auch bei x = 100
> positiv sein und das ist ja nicht der fall. ich steh wohl
> grad extrem auf dem schlauch.
Aus obiger Ungleichung folgt zunächst
[mm]\left(x+1\right)^{1/4} < \bruch{1}{2}[/mm]
[mm]\gdw x+1 < \left(\bruch{1}{2}\right)^{4}=\bruch{1}{16}[/mm]
[mm] \gdw x < \bruch{1}{16} -1 = -\bruch{15}{16}[/mm]
Da x+1 > 0 gilt, ist die Funktion positiv für
[mm]-1 < x < -\bruch{15}{16}[/mm]
Gruss
MathePower
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 18:08 Fr 30.10.2009 | Autor: | tdk123 |
Ok danke! das macht sinn.
aber wieso krieg ich x > -15/16. sollte ja < sein.
hab bei [mm] (x+1)^{-1/4} [/mm] > 2 hoch 4 gemacht. dann den kehrwert. wo liegt da der fehler?
|
|
|
|
|
Hallo tdk123,
> Ok danke! das macht sinn.
>
> aber wieso krieg ich x > -15/16. sollte ja < sein.
> hab bei [mm](x+1)^{-1/4}[/mm] > 2 hoch 4 gemacht. dann den
> kehrwert. wo liegt da der fehler?
Nun, wenn Du den Kehrwert bildest,
dreht sich das Ungleichheitszeichen um.
Gruss
MathePower
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:32 Fr 30.10.2009 | Autor: | tdk123 |
super! :) danke. so einfach und doch so schwer :) das kommt vom unregelmäßigem schulbesuch.
|
|
|
|