www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Funktion zweier Veränderlicher
Funktion zweier Veränderlicher < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktion zweier Veränderlicher: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:15 Do 18.12.2008
Autor: JMW

Aufgabe
[Dateianhang nicht öffentlich]

Also die a konnte ich lösen.
[mm] G_{0} [/mm] ist der Punkt (0,0) un d ein Kreis um den Mittelpunkt mit dem radius 1,
[mm] G_{+} [/mm] ist die Menge außerhalb des Kreises
[mm] G_{-} [/mm] ist die Menge innerhalb des Kreises

Zur b blicke ich nicht durch. Ich weiß zwar, daß ein Kreis mit dem Mittelpunkt (0,0) die Funktion schneidet, aber ich denke mit der Nivealinie ist  f(x,y)=0 gemeint oder? Mit der Funktion angeben komme ich auch nicht weiter..

Bei der c blicke ich auch nicht durch.

Danke schonmal für die Hilfe!

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Funktion zweier Veränderlicher: Antwort
Status: (Antwort) fertig Status 
Datum: 17:55 Do 18.12.2008
Autor: djmatey


> [Dateianhang nicht öffentlich]
>  Also die a konnte ich lösen.
> [mm]G_{0}[/mm] ist der Punkt (0,0) un d ein Kreis um den Mittelpunkt
> mit dem radius 1,

Richtig. Genauer: Die Kreislinie, nicht der gesamte Kreisinhalt.

>   [mm]G_{+}[/mm] ist die Menge außerhalb des Kreises

Richtig.

>  [mm]G_{-}[/mm] ist die Menge innerhalb des Kreises

Richtig, wenn du (0,0) rausnimmst.

>  
> Zur b blicke ich nicht durch. Ich weiß zwar, daß ein Kreis
> mit dem Mittelpunkt (0,0) die Funktion schneidet, aber ich
> denke mit der Nivealinie ist  f(x,y)=0 gemeint oder? Mit
> der Funktion angeben komme ich auch nicht weiter..

Für f: [mm] \IR^n \Rightarrow \IR [/mm] und [mm] c\in\IR [/mm] heißt
[mm] f_c [/mm] := [mm] \{x \in \IR^n | f(x)=c\} [/mm]
die Niveaumenge von f zum Niveau c.
In deinem Fall ist n=2, dann nennt man die Niveaumenge auch Niveaulinie.
Du sollst hier zeigen, dass f auf Kreislinien konstant ist.
Und es gilt ja, dass [mm] r=\wurzel{x^2+y^2}, [/mm] also ersetze in deiner Funktion diese Wurzel durch r, dann hast du eine Funktion, die in Abhängigkeit von r das Kreisniveau angibt!

>  
> Bei der c blicke ich auch nicht durch.

Wikipedia: Richtungsableitung

>  
> Danke schonmal für die Hilfe!

LG djmatey


Bezug
                
Bezug
Funktion zweier Veränderlicher: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:08 Fr 19.12.2008
Autor: JMW

Super vielen Dank Djmatey!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]