Funktionen ableiten < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:39 Fr 18.08.2006 | Autor: | jane882 |
Aufgabe | Die Funktion g sei dreimal differenzierbar. Bestimmen sie f´(x) und f´´(x) |
Ich weiß ja jetzt schon, dass wieder alles falsch ist:( *verzweifel* :(
Ich weiß aber nicht, wie ich das machen soll:(
f(x)= x²* g(x)
Meine Ableitungen:
f´(x)= x²*g*(x)*1
f´´(x)= x²*g*(x)
f(x)= x*g´(x)
Meine Ableitungen:
f´(x)= x*g´*(x)*1
f´´(x)=x*g´*(x)
f(x)= g(x)*g´(x)
Meine:
f´(x)= g(x)+g´(x)*1
f´´(x)=? :(
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:13 Fr 18.08.2006 | Autor: | clwoe |
Hallo,
also eines ist schon mal klar. Da es sich hier immer um Produkte handelt mit zwei eigenen Funktionen als Faktoren, musst du hier jedesmal die Produktregel anwenden.
Diese lautet: f(x)=a(x)*b(x) [mm] \Rightarrow [/mm] f'(x)=a'(x)*b(x)+a(x)*b'(x)
Diese Formel musst du hier auf alles anwenden.
Die erste Aufgabe lautet:
f(x)=x²*g(x)
[mm] x^2 [/mm] ist hier eine eigene Funktion und auch g(x) ist eine eigene Funktion, du weisst ja nicht wie g(x) aussieht, es kann sich hierbei um eine e-Funktion handeln oder auch um eine trigonometrische Funktion, die du dann also nicht miteinander multiplizieren kannst, deshalb musst du die Produktregel anwenden. Andernfalls könntest du einfach alles ausmultiplizieren und den neuen Term dann wie gewöhnlich ableiten.
Aber nun zurück zur Aufgabe.
Die Ableitung ist also:
[mm] f'(x)=2x*g(x)+x^2*g'(x) [/mm] genauso wie nach der Formel von oben.
Für die zweite Ableitung musst du nun aufpassen, denn nun hast du in dem Summand wieder ein Produkt mit zwei eigenständigen Funktionen, das bedeutet, du musst nun auf jeden Summand die Produktregel von neuem anwenden. Ich mache es dir für die erste Aufgabe vor, den Rest müsstes du alleine schaffen.
Die zweite Ableitung sieht demnach wie folgt aus:
[mm] f''(x)=2*g(x)+2x*g'(x)+2x*g'(x)+x^2*g''(x)
[/mm]
Die anderen beiden Aufgaben gehen analog.
Du kannst es ja mal probieren und deine Ergebnisse hier wieder einstellen.
Ich hoffe ich konnte dir weiterhelfen!
Gruß,
clwoe
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:26 Fr 18.08.2006 | Autor: | jane882 |
Hey:) Ich glaube ich habs verstanden:)Und wenn die Aufgabe jetzt hier richtig ist, dann schrei ich:)
Aber noch ne kleine Frage, die Regel die du da genannt hast, war das nicht die Kettenregel? Weil die geht doch genauso?:)
Also zu meiner Aufgabe:
f(x)= x*g'(x)
f´(x)= 1*g´(x)+x*g´´(x)
f´´(x)= g´(x)+1*g´´(x)+1*g´´(x)+x*g´´´(x)
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:54 Fr 18.08.2006 | Autor: | clwoe |
Hi,
die Kettenregel ist das nicht, die brauchst du in der dritten Aufgabe und nicht bei der zweiten. Die Kettenregel brauchst du, wenn du eine Funktion potenzierst, z.B.: [mm] (a(x))^2
[/mm]
Die Ableitung lautet dann: [mm] 2*a'(x)*(a(x))^{2-1}
[/mm]
Du ziehst die Hochzahl vor den Ausdruck, dann leitest du die Klammer ab und schreibst danach die Klammer wieder hin und ziehst zusätzlich von der Hochzahl an der Klammer 1 ab.
Nun zu deiner Aufgabe.
Die erste Ableitung war richtig. Meinen Glückwunsch.
Die zweite Ableitung nur zur Hälfte.
f(x)= x*g'(x)
f'(x)= 1*g'(x)+x*g''(x) richtig!!!
Bei der ersten Ableitung hast du doch als ersten Summanden nur noch g'(x) stehen, der wird nun einfach abgeleitet, du hast doch kein Produkt also musst du für den ersten Summanden auch keine Produktregel anwenden sondern einfach nur die Funktion ableiten.
Also:
f''(x)=g''(x)+1*g''(x)+x*g'''(x)
So ist es richtig.
Ich hoffe es ist nun klarer. Die Kettenregel, als kleiner Tipp, musst du bei der dritten Aufgabe für die zweite Ableitung anwenden, wenn du dir die erste Ableitung anschaust nachdem du sie gemacht hast.
Poste doch einfach wieder deine Ergebnisse.
Gruß,
clwoe
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 21:38 Fr 18.08.2006 | Autor: | jane882 |
ey das macht voll spaß:D
weils so cool ist, mach ich auch noch direkt die dritte !
f(x)= g(x)*g`(x)
f´(x)=g`(x)*g`(x)+g(x)*g´´(x)
f´´(x)=g´´(x)*g´(x)+g´(x)*g´´(x)+g´(x)*g´´(x)+g(x)+g´´´(x)
tut mir leid das die ableitungsstriche so verschieden sind, aber wenn da 1 oder 2 striche sind,dann heißt das auch 1 oder 2 ableitung:) ich habs mit dem tippen nicht so...
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:02 Fr 18.08.2006 | Autor: | clwoe |
Hi,
in deiner zweiten Ableitung der dritten Aufgabe ist hinten ein Fehler eingeschlichen.
f(x)= g(x)*g'(x)
f´(x)=g'(x)*g'(x)+g(x)*g´´(x)
f´´(x)=g´´(x)*g´(x)+g´(x)*g´´(x)+g´(x)*g´´(x)+g(x)+g´´´(x) (nicht so!)
f´´(x)=g´´(x)*g´(x)+g´(x)*g´´(x)+g´(x)*g´´(x)+g(x) * g´´´(x)
Dann passt es wieder!
Gruß,
clwoe
|
|
|
|