www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Funktionsanpassung
Funktionsanpassung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionsanpassung: Tipp
Status: (Frage) beantwortet Status 
Datum: 16:44 Mo 10.12.2007
Autor: claudi7

Hi,

wie komme ich von:

m(t)= [mm] 4x^2-16x+15 [/mm] auf [mm] \integral_{1}^{3}{m(t) dx}=\bruch{2}{3} [/mm]

Das steht so in der Lösung, aber ich habe keinen Schimmer wie man darauf kommt.

Wäre nett, wenn mir jemand weiterhelfen würde.

Gruß



        
Bezug
Funktionsanpassung: Tipp
Status: (Antwort) fertig Status 
Datum: 17:05 Mo 10.12.2007
Autor: Sara66

Hey Claudi7!
Da musst du nur einfach integrieren und die Grenzen einsetzen.

Hier ist das integrieren ziemlich einfach:
es gilt ja [mm] \integral{a*x^{b}dx}=[\bruch{a}{b+1}*x^{b+1}] [/mm]
Zum Beispiel ist
[mm] \integral{2*x^{3}dx}=[\bruch{2}{3+1}*x^{3+1}]=[\bruch{1}{2}*x^4] [/mm]

oder
[mm] \integral{15*x^{1}dx}=[\bruch{15}{1+1}*x^{1+1}]=[\bruch{15}{2}*x^{2}] [/mm]

Wenn du dann deine komplette Stammfunktion gebildet hast, dann setzt du als erstes die obere Grenze (hier 3) in deine Stammfunktion für x ein. Dann setzt du die untere Grenze (1) in deine Stammfunktion ein.
Das ziehst du dann von dem Wert mit der oberen Stammfunktion ab.

Bilde doch mal die Stammfunktion, dann sehen wir weiter!

Vg sara

Bezug
                
Bezug
Funktionsanpassung: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:27 Mo 10.12.2007
Autor: claudi7


> Hey Claudi7!
>  Da musst du nur einfach integrieren und die Grenzen
> einsetzen.
>  
> Hier ist das integrieren ziemlich einfach:
>  es gilt ja [mm]\integral{a*x^{b}dx}=[\bruch{a}{b+1}*x^{b+1}][/mm]
>  Zum Beispiel ist
> [mm]\integral{2*x^{3}dx}=[\bruch{2}{3+1}*x^{3+1}]=[\bruch{1}{2}*x^4][/mm]
>  
> oder
> [mm]\integral{15*x^{1}dx}=[\bruch{15}{1+1}*x^{1+1}]=[\bruch{15}{2}*x^{2}][/mm]
>  
> Wenn du dann deine komplette Stammfunktion gebildet hast,
> dann setzt du als erstes die obere Grenze (hier 3) in deine
> Stammfunktion für x ein. Dann setzt du die untere Grenze
> (1) in deine Stammfunktion ein.
>  Das ziehst du dann von dem Wert mit der oberen
> Stammfunktion ab.
>  
> Bilde doch mal die Stammfunktion, dann sehen wir weiter!
>  
> Vg sara



[mm] F(x)=\bruch{4}{3}x^3-8x^2+15x [/mm]

F(3)=9
[mm] F(1)=\bruch{25}{3} [/mm]

[mm] F(3)-F(1)=\bruch{2}{3} [/mm]


Bingo! Danke


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]