www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Funktionsreihen
Funktionsreihen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionsreihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:19 So 23.05.2004
Autor: Nick

Guten Tag,

also ich hab' da mal ne Frage:

Man zeige:

[mm]\lim_{n \to \infty} \summe_{k=0}^{n} \bruch{2^k}{k!} (\bruch{n}{n+2})^k =e^2 [/mm]

Hinweis: Setzen Sie [mm]f_n(x):= \summe_{k=1}^{n} \bruch{x^k}{k!}[/mm]
[mm]e^x= \summe_{n=0}^{\infty} \bruch{x^n}{n!}[/mm]

Könnte es sein, dass die sich da mit der 1 vertan haben und das da igentlich ne Null stehen müsste?!

Ich habe es aber auch mal anders versucht, nur da benutze ich nicht den Hinweis.
Also ich habe mir gedacht, da [mm]e² =\lim_{n \to \infty} (1+\bruch{2}{n})^n [/mm] gilt, muss folglich
[mm]\lim_{n \to \infty} \summe_{k=0}^{n} \bruch{2^k}{k!} (\bruch{n}{n+2})^k = \lim_{n \to \infty} (1+\bruch{2}{n})^n[/mm] gelten und dann auch

[mm]\summe_{k=0}^{n} \bruch{2^k}{k!} (\bruch{n}{n+2})^k =(1+\bruch{2}{n})^n [/mm].

Somit habe ich dann wie folgt begonnen:

[mm](1+\bruch{2}{n})^n = \summe_{k=0}^{n}{n \choose k} \bruch {2^k}{n^k} = \summe_{k=0}^{n} \bruch {n!}{k!(n-k)!}*\bruch {2^k}{n^k} [/mm]
[mm]=\summe_{k=0}^{n} \bruch {2^k}{k!} \bruch{n!}{(n-k)!n^k}[/mm]
[mm]=\summe_{k=0}^{n} \bruch {2^k}{k!} \bruch {(n-k)!(n-(k+1))*....*(n)}{(n-k)!*n^k}[/mm]
[mm]=\summe_{k=0}^{n} \bruch {2^k}{k!} \bruch{(n-(k+1))*(n-(k+2))*....*n}{n^k} (1-\bruch{k-k}{n}) [/mm]
[mm]=\summe_{k=0}^{n} \bruch {2^k}{k!} \bruch {(n-k-1)(n-k-2)*....*n}{n^k}(1-\bruch{1}{n})[/mm]
[mm]=\summe_{k=0}^{n} \bruch {2^k}{k!} \bruch {n^k(1-\bruch{k+1}{n})*(1-\bruch{k+1}{n})*....*1}{n^k}[/mm]
[mm]]=\summe_{k=0}^{n} \bruch {2^k}{k!} (1-\bruch{k+1}{n})*(1-\bruch{k+1}{n})*....*(1-\bruch{1}{n})[/mm]

Ich muss somit nur noch zeigen, dass [mm]1-\bruch{k+1}{n})*(1-\bruch{k+1}{n})*....*(1-\bruch{1}{n}) =(\bruch {n}{n+2})^k[/mm] ist.

Könnt ihr mir da vielleicht helfen?

Nick

        
Bezug
Funktionsreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:05 So 23.05.2004
Autor: Stefan

Hallo Nick!

Der Einfachheit halber meine Lösung, da mich dein Ansatz irritiert. ;-)

Dau hast recht die [mm] $f_n$'s [/mm] sind falsch definiert, da muss eine $0$ statt der $1$ stehen.

Es sei [mm] $\varepsilon>0$ [/mm] beliebig vorgegeben.

Da [mm] $(f_n)_{n \in \IN}$ [/mm] gegen $f$ lokal gleichmäßig konvergiert, gibt es ein [mm] $n_0(\varepsilon) \in \IN$, [/mm] so dass für alle $n [mm] \in \IN$, [/mm] $n [mm] \ge n_0(\varepsilon)$ [/mm] und alle $x [mm] \in \overline{B_2(0)}$ [/mm] gilt:

[mm] $|f_n(x) [/mm] - f(x)| < [mm] \frac{\varepsilon}{2}$. [/mm]

Da $f$ auf [mm] $\overline{B_2(0)}$ [/mm] gleichmäßig stetig ist, gibt es ein [mm] $\delta [/mm] >0$, so dass für alle [mm] $x,y\in \overline{B_2(0)}$ [/mm] mit $|x-y| < [mm] \delta$ [/mm] folgendes gilt:

$|f(x) - f(y)| < [mm] \varepsilon$. [/mm]

Nun gibt es ein [mm] $n_1(\varepsilon) \in \IN$, [/mm] so dass für alle $n [mm] \in \IN$, [/mm] $n [mm] \ge n_1(\varepsilon)$, [/mm] gilt:

[mm] $|\frac{2n}{n+2} [/mm] - 2|< [mm] \delta$. [/mm]

Daraus folgt für alle $n [mm] \ge N(\varepsilon):=\max\{n_0(\varepsilon), n_1(\varepsilon)\}$: [/mm]

[mm]|f_n(\frac{2n}{n+2}) - f(2)| \le |f_n(\frac{2n}{n+2}) - f(\frac{2n}{n+2})| + |f(\frac{2n}{n+2}) - f(2)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon[/mm].

Daraus folgt die Behauptung.

Liebe Grüße
Stefan


Bezug
                
Bezug
Funktionsreihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:07 So 23.05.2004
Autor: Nick

Hallo stefan,

jetzt hat mich aber deine Lösung total irretiert. Also du sagst doch am Anfang, dass [mm](f_n)_{n\ge1}= \summe_{k=1}^{n} \bruch{x^k}{k!} [/mm] gegen [mm]f(x)=e^x[/mm] lokal gleichmäßig konvergiert?

Was bedeutet dann bei dir [mm]\overline{B_2(0)}[/mm]?

Und wieso ist [mm]|f_n(x) - f(x)| < \frac{\varepsilon}{2} [/mm]?

Und wie kommst du auf [mm] |\frac{2n}{n+2} - 2|< \delta [/mm]?

Könntest du mir das vielleicht nochmal etwas erklären

Nick

Bezug
                        
Bezug
Funktionsreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:19 So 23.05.2004
Autor: Stefan

Hallo Nick!

> jetzt hat mich aber deine Lösung total irretiert.

Echt? Mist, ich dachte ich hätte sie ausführlich und verständlich aufgeschrieben. Hmmh, das frustriert mich jetzt.

> Also du
> sagst doch am Anfang, dass [mm](f_n)_{n\ge1}= \summe_{k=1}^{n} > \bruch{x^k}{k!}[/mm]
> gegen [mm]f(x)=e^x[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

lokal gleichmäßig konvergiert?

Ja! Also $(f_n)_{n \in \IN\$ konvergiert auf jedem Kompaktum gleichmäßig, insbesondere also auf $\overline{B_2(0)}$!

> Was bedeutet dann bei dir [mm]\overline{B_2(0)}[/mm]?

Das ist der abgeschlossene Ball um $0$ mit Radius $2$, also:

[mm] $B_2(0) [/mm] = [mm] \{x \in \IR\, :\, |x-0|\le 2\}$. [/mm]
  

> Und wieso ist [mm]|f_n(x) - f(x)| < \frac{\varepsilon}{2} [/mm]?

  
Ich sage ja nur: Da [mm] $f_n$ [/mm] gleichmäßig auf [mm] $B_2(0)$ [/mm] konvergiert, gibt es eben zu [mm] $\epsilon'= \frac{\epsilon}{2}$ [/mm] ein [mm] $n_0 \in \IN$ [/mm] mit

[mm] $|f_n(x) [/mm] - f(x)| < [mm] \varepsilon'=\frac{\varepsilon}{2}$ [/mm]

für alle $x [mm] \in B_2(0)$ [/mm] und alle $n [mm] \in \IN$, [/mm] $n [mm] \ge n_0$. [/mm] Das ist doch gerade die Definition von gleichmäßiger Konvergenz auf [mm] $B_2(0)$. [/mm]

> Und wie kommst du auf [mm]|\frac{2n}{n+2} - 2|< \delta [/mm]?

Nun ja, es gilt doch offenbar:

[mm]\lim\limits_{n \to \infty} \frac{2n}{n+2} = \lim\limits_{n \to \infty} \frac{2}{1+\frac{2}{n}} = \frac{2}{1+0} = 2[/mm].

Nach Definition der Konvergenz gibt es also speziell für [mm] $\delta [/mm] > 0$ ein [mm] $n_1 \in \IN$, [/mm] so dass für alle $n [mm] \in \IN$, [/mm] $n [mm] \ge n_1$, [/mm] gilt:

[mm]|\frac{2n}{n+2} - 2|< \delta [/mm].

Jetzt klarer?

Liebe Grüße
Stefan


Bezug
        
Bezug
Funktionsreihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:23 So 23.05.2004
Autor: Marc

Hallo Nick,

>  Also ich habe mir gedacht, da [mm]e² =\lim_{n \to \infty} (1+\bruch{2}{n})^n[/mm]
> gilt, muss folglich
>  [mm]\lim_{n \to \infty} \summe_{k=0}^{n} \bruch{2^k}{k!} (\bruch{n}{n+2})^k = \lim_{n \to \infty} (1+\bruch{2}{n})^n[/mm]
> gelten und dann auch
>  
> [mm]\summe_{k=0}^{n} \bruch{2^k}{k!} (\bruch{n}{n+2})^k =(1+\bruch{2}{n})^n [/mm].

Du schließt also von [mm] $\limes_{n\to\infty}a_n=\limes_{n\to\infty}b_n$ [/mm] auf [mm] $a_n=b_n$? [/mm] Das ist sehr gewagt, falls das tatsächlich deine Schlußweise ist. Gegenbeispiel:
[mm] a_n=\bruch{1}{n} [/mm] und [mm] b_n=-\bruch{1}{n} [/mm]

Das wollte ich nur noch zu deiner Lösung bemerken...

Viele Grüße,
Marc.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]