Galois-Erweiterung? < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo zusammen,
ich bereite mich auf eine Algebra-Prüfung vor und hab in einem Prüfungsprotokoll folgende Frage gefunden:
Ist [mm] Q[\wurzel{2},\wurzel[3]{2}] [/mm] eine Galois-Erweiterung?
Mir ist nicht ganz klar, wie man die Beantwortung der Frage findet.
Wenn jeweils ein Element zu einem Körper adjungiert wird, ist mir bewusst, wie man dann eine solche Frage beantwortet. Z.B. ist ja nach Hauptsatz der Galoistheorie [mm] Q[\wurzel{2}] [/mm] eine Galois-Erweiterung und [mm] Q[\wurzel[3]{2}] [/mm] keine. Bei mehreren Adjunktionen weiss ich allerdings nicht, wie man da vorgeht. Muss man sich das irgendwie an einem Körperdiagramm klarmachen, indem man sich den Grad des jeweiligen Zerfällungskörper anschaut??
Wenn [mm] Q[\wurzel{2},\wurzel[3]{2}] [/mm] eine Galois-Erweiterung wäre, müsste es ja ein separables Polynom f aus Q[x] geben, sodass [mm] Q[\wurzel{2},\wurzel[3]{2}] [/mm] ein Zerfällungskörper von f ist. Hilft mir das weiter? Wie finde ich dann das Polynom f? Ich hab bisher keins gefunden, deshalb vermute ich mal stark, dass es sich hierbei um keine Galois-Erweiterung handelt!
Wie geht man praktisch in einem solchen Fall am besten vor?
Gruß, mh
|
|
|
|
Hallo,
der HS der Galois-Theorie liefert doch, dass die KE genau dann galoissch ist, wenn sie auch normal und separabel ist. Betrachte nun [mm] \IQ(\wurzel[3]{2}):\IQ. [/mm] Das ist sicherlich nicht normal, denn [mm] \IQ(\wurzel[3]{2}) [/mm] enthält nur reelle Zahlen, also nicht alle Nullstellen des nach Eisenstein irreduzibelen Polynoms [mm] x^{3}-2\in\IQ[x]. [/mm]
Man kann sich nun weiter das Polynom [mm] (x^{3}-2)(x^{2}-2) [/mm] anschauen. [mm] \wurzel[3]{2}, \pm\wurzel{2} [/mm] sind Nullstellen dieses Polynoms. Ist aber [mm] \IQ(\wurzel[3]{2},\wurzel{2}):\IQ [/mm] Zerfällungskörper davon? Sicher nicht! Damit ist die Sache klar!
Viele Grüße
Daniel
|
|
|
|