Gamma-Funktion < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:05 Mi 16.11.2011 | Autor: | skoopa |
Aufgabe | Zeigen Sie, dass für jedes [mm] n\in\IN, z\in\IC, z\not\in -\IN_{0} [/mm] gilt:
[mm] \produkt_{k=0}^{n-1}\Gamma(\bruch{z+k}{n})=(2\pi)^{\bruch{n-1}{2}}n^{\bruch{1}{2}-z}\Gamma(z). [/mm] |
HeyHey!
Also ich steck irgendwie in ner Sackgasse.
Mein bisheriges Vorgehen:
Betrachte [mm] f_{n}(z):=n^{z-\bruch{1}{2}}(2\pi)^{\bruch{1-n}{2}}\produkt_{k=0}^{n-1}\Gamma(\bruch{z+k}{n}).
[/mm]
Dann müsste ich eigentlich [mm] f_{n}(z)=\Gamma(z) [/mm] erhalten.
Jetzt habe ich gezeigt, dass [mm] $f_{n}(z+1)=zf_{n}(z)$ [/mm] gilt und dass [mm] f_{n} [/mm] auf dem Streifen [mm] $1\le Re(z)\le2 [/mm] beschränkt ist.
Also weiß ich nach der Charakterisierung von Wielandt für [mm] \Gamma(z), [/mm] dass [mm] f_{n}(z)=f_{n}(1)\Gamma(z) [/mm] gilt.
Aber wenn ich das ausrechne erhalte ich:
[mm] f_{n}(1)=\sqrt{n}(2\pi)^{\bruch{n-1}{2}}\produkt_{k=0}^{n-1}\Gamma(\bruch{z+k}{n}).
[/mm]
Und irgendwie sehe ich nicht wie ich jetzt darauf komme, dass [mm] f_{n}(1)=1 [/mm] ist, was es ja sein sollte.
Und ich weiß nicht, ob mein Ansatz falsch ist und ich nur nicht sehe wie's weiter geht oder ob ich was falsch gemacht hab.
Ich wäre äußerst dankbar für Tipps oder Korrekturen!
Danke schonmal!
Beste Grüße!
skoopa
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:24 Mi 16.11.2011 | Autor: | rainerS |
Hallo skoopa!
> Zeigen Sie, dass für jedes [mm]n\in\IN, z\in\IC, z\not\in -\IN_{0}[/mm]
> gilt:
>
> [mm]\produkt_{k=0}^{n-1}\Gamma(\bruch{z+k}{n})=(2\pi)^{\bruch{n-1}{2}}n^{\bruch{1}{2}-z}\Gamma(z).[/mm]
> HeyHey!
> Also ich steck irgendwie in ner Sackgasse.
> Mein bisheriges Vorgehen:
> Betrachte
> [mm]f_{n}(z):=n^{z-\bruch{1}{2}}(2\pi)^{\bruch{1-n}{2}}\produkt_{k=0}^{n-1}\Gamma(\bruch{z+k}{n}).[/mm]
> Dann müsste ich eigentlich [mm]f_{n}(z)=\Gamma(z)[/mm] erhalten.
> Jetzt habe ich gezeigt, dass [mm]$f_{n}(z+1)=zf_{n}(z)$[/mm] gilt
> und dass [mm]f_{n}[/mm] auf dem Streifen [mm]$1\le Re(z)\le2[/mm] beschränkt
> ist.
> Also weiß ich nach der Charakterisierung von Wielandt
> für [mm]\Gamma(z),[/mm] dass [mm]f_{n}(z)=f_{n}(1)\Gamma(z)[/mm] gilt.
> Aber wenn ich das ausrechne erhalte ich:
>
> [mm]f_{n}(1)=\sqrt{n}(2\pi)^{\bruch{n-1}{2}}\produkt_{k=0}^{n-1}\Gamma(\bruch{z+k}{n}).[/mm]
Nein, nicht ganz:
[mm] f_{n}(1)=\sqrt{n}(2\pi)^{\bruch{1-n}{2}}\produkt_{k=0}^{n-1}\Gamma(\bruch{1+k}{n})[/mm] .
Offensichtlich ist [mm] $f_1(1)=1$, [/mm] sodass du erst ab n=2 rechnen musst.
Zunächst einmal ist der letzte Faktor des Produkts immer [mm] $\Gamma(1)=1$, [/mm] daher kannst du für [mm] $n\ge [/mm] 2$ schreiben:
[mm] f_{n}(1)=\sqrt{n}(2\pi)^{\bruch{1-n}{2}}\produkt_{k=0}^{n-2}\Gamma(\bruch{1+k}{n})[/mm] .
Dann ergeben der erste un der letzte Faktor des Produkts
[mm] \Gamma(\bruch{1}{n}) \Gamma(1-\bruch{1}{n}) = \bruch{\pi}{\sin(\pi/n)} [/mm] ,
ebenso der zweite und vorletzte Faktor:
[mm] \Gamma(\bruch{2}{n}) \Gamma(1-\bruch{2}{n}) = \bruch{\pi}{\sin(2\pi/n)} [/mm] ,
und so weiter. Ist n gerade, so bleibt das Produkt
[mm] \pi^{n/2} \left(\produkt_{k=1}^{n/2} \sin(\bruch{k}{n}\pi) \right)^{-1} [/mm] ;
im Fall n ungerade steht da
[mm] \Gamma(1/2) \pi^{\lfloor n/2\rfloor }\left(\produkt_{k=1}^{\lfloor n/2\rfloor } \sin(\bruch{k}{n}\pi) \right)^{-1} = \pi^{n/2} \left(\produkt_{k=1}^{\lfloor n/2\rfloor } \sin(\bruch{k}{n}\pi) \right)^{-1}[/mm] .
Wenn du nun noch berücksichtigst, dass [mm] $\sin(\pi/2)=1$ [/mm] und [mm] $\sin(\bruch{k}{n}\pi) [/mm] = [mm] \sin(\pi-\bruch{k}{n}\pi) [/mm] = [mm] \sin(\bruch{n-k}{n}\pi)$ [/mm] ist, kannst du beides wieder zusammenfassen:
[mm] \pi^{n/2} \left(\produkt_{k=1}^{n-1 } \sin(\bruch{k}{n}\pi) \right)^{-1/2}[/mm] .
Vielleicht hilft dir das weiter.
Viele Grüße
Rainer
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 00:38 Do 17.11.2011 | Autor: | skoopa |
Hi Rainer!
Also danke erstmal für die Antwort!
> > Zeigen Sie, dass für jedes [mm]n\in\IN, z\in\IC, z\not\in -\IN_{0}[/mm]
> > gilt:
> >
> >
> [mm]\produkt_{k=0}^{n-1}\Gamma(\bruch{z+k}{n})=(2\pi)^{\bruch{n-1}{2}}n^{\bruch{1}{2}-z}\Gamma(z).[/mm]
> > HeyHey!
> > Also ich steck irgendwie in ner Sackgasse.
> > Mein bisheriges Vorgehen:
> > Betrachte
> >
> [mm]f_{n}(z):=n^{z-\bruch{1}{2}}(2\pi)^{\bruch{1-n}{2}}\produkt_{k=0}^{n-1}\Gamma(\bruch{z+k}{n}).[/mm]
> > Dann müsste ich eigentlich [mm]f_{n}(z)=\Gamma(z)[/mm]
> erhalten.
> > Jetzt habe ich gezeigt, dass [mm]$f_{n}(z+1)=zf_{n}(z)$[/mm]
> gilt
> > und dass [mm]f_{n}[/mm] auf dem Streifen [mm]$1\le Re(z)\le2[/mm] beschränkt
> > ist.
> > Also weiß ich nach der Charakterisierung von Wielandt
> > für [mm]\Gamma(z),[/mm] dass [mm]f_{n}(z)=f_{n}(1)\Gamma(z)[/mm] gilt.
> > Aber wenn ich das ausrechne erhalte ich:
> >
> >
> [mm]f_{n}(1)=\sqrt{n}(2\pi)^{\bruch{n-1}{2}}\produkt_{k=0}^{n-1}\Gamma(\bruch{z+k}{n}).[/mm]
>
> Nein, nicht ganz:
Ja stimmt. Falsch abgetippt...
>
> [mm]f_{n}(1)=\sqrt{n}(2\pi)^{\bruch{1-n}{2}}\produkt_{k=0}^{n-1}\Gamma(\bruch{1+k}{n})[/mm]
> .
>
> Offensichtlich ist [mm]f_1(1)=1[/mm], sodass du erst ab n=2 rechnen
> musst.
>
> Zunächst einmal ist der letzte Faktor des Produkts immer
> [mm]\Gamma(1)=1[/mm], daher kannst du für [mm]n\ge 2[/mm] schreiben:
>
> [mm]f_{n}(1)=\sqrt{n}(2\pi)^{\bruch{1-n}{2}}\produkt_{k=0}^{n-2}\Gamma(\bruch{1+k}{n})[/mm]
> .
>
> Dann ergeben der erste un der letzte Faktor des Produkts
>
> [mm]\Gamma(\bruch{1}{n}) \Gamma(1-\bruch{1}{n}) = \bruch{\pi}{\sin(\pi/n)}[/mm]
> ,
>
> ebenso der zweite und vorletzte Faktor:
>
> [mm]\Gamma(\bruch{2}{n}) \Gamma(1-\bruch{2}{n}) = \bruch{\pi}{\sin(2\pi/n)}[/mm]
> ,
>
> und so weiter. Ist n gerade, so bleibt das Produkt
>
> [mm]\pi^{n/2} \left(\produkt_{k=1}^{n/2} \sin(\bruch{k}{n}\pi) \right)^{-1}[/mm]
> ;
>
> im Fall n ungerade steht da
>
> [mm]\Gamma(1/2) \pi^{\lfloor n/2\rfloor }\left(\produkt_{k=1}^{\lfloor n/2\rfloor } \sin(\bruch{k}{n}\pi) \right)^{-1} = \pi^{n/2} \left(\produkt_{k=1}^{\lfloor n/2\rfloor } \sin(\bruch{k}{n}\pi) \right)^{-1}[/mm]
> .
>
> Wenn du nun noch berücksichtigst, dass [mm]\sin(\pi/2)=1[/mm] und
> [mm]\sin(\bruch{k}{n}\pi) = \sin(\pi-\bruch{k}{n}\pi) = \sin(\bruch{n-k}{n}\pi)[/mm]
> ist, kannst du beides wieder zusammenfassen:
>
> [mm]\pi^{n/2} \left(\produkt_{k=1}^{n-1 } \sin(\bruch{k}{n}\pi) \right)^{-1/2}[/mm]
> .
>
> Vielleicht hilft dir das weiter.
Leider nicht...
Hab bisher alles verstanden und bin dabei. Hatte auch schonmal sowas versucht, war aber nicht weiter gekommen.
Aber irgendwie hat sich jetzt das Problem doch nur von der Gamma-Funktion auf den Sinus verlagert. Und da ist mir das ebenfalls schleierhaft, wie das weitergehen soll.
Wir sind jetzt momentan also bei
[mm] f_{n}(1)=\sqrt{n}(2)^{\bruch{1-n}{2}}(\pi)^{\bruch{1-n}{2}}(\pi)^{\bruch{n}{2}}(\produkt_{k=1}^{n-1}sin^{-1}(\bruch{k}{n}\pi))^{\bruch{1}{2}} [/mm] = [mm] 2^{\bruch{1-n}{2}}\sqrt{n\pi\produkt_{k=1}^{n-1}sin^{-1}(\bruch{k}{n}\pi)} [/mm] = [mm] (\bruch{1}{2})^{\bruch{n}{2}}\sqrt{2n\pi\produkt_{k=1}^{n-1}sin^{-1}(\bruch{k}{n}\pi)}
[/mm]
Aber irgendwie hab ich keine Idee wie man diese Sinusse wegbekommt...
>
> Viele Grüße
> Rainer
Grüße!
skoopa
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:53 Do 17.11.2011 | Autor: | rainerS |
Hallo!
Mir fiel heute auf, dass ich mich beim Zählen der Faktoren vertan habe: Das Produkt hat $(n-1)$ Faktoren, nicht n.
> Hi Rainer!
> > > Zeigen Sie, dass für jedes [mm]n\in\IN, z\in\IC, z\not\in -\IN_{0}[/mm]
> > > gilt:
> > >
> > >
> >
> [mm]\produkt_{k=0}^{n-1}\Gamma(\bruch{z+k}{n})=(2\pi)^{\bruch{n-1}{2}}n^{\bruch{1}{2}-z}\Gamma(z).[/mm]
> > > HeyHey!
> > > Also ich steck irgendwie in ner Sackgasse.
> > > Mein bisheriges Vorgehen:
> > > Betrachte
> > >
> >
> [mm]f_{n}(z):=n^{z-\bruch{1}{2}}(2\pi)^{\bruch{1-n}{2}}\produkt_{k=0}^{n-1}\Gamma(\bruch{z+k}{n}).[/mm]
> > > Dann müsste ich eigentlich [mm]f_{n}(z)=\Gamma(z)[/mm]
> > erhalten.
> > > Jetzt habe ich gezeigt, dass [mm]$f_{n}(z+1)=zf_{n}(z)$[/mm]
> > gilt
> > > und dass [mm]f_{n}[/mm] auf dem Streifen [mm]$1\le Re(z)\le2[/mm] beschränkt
> > > ist.
> > > Also weiß ich nach der Charakterisierung von
> Wielandt
> > > für [mm]\Gamma(z),[/mm] dass [mm]f_{n}(z)=f_{n}(1)\Gamma(z)[/mm] gilt.
> > > Aber wenn ich das ausrechne erhalte ich:
> > >
> > >
> >
> [mm]f_{n}(1)=\sqrt{n}(2\pi)^{\bruch{n-1}{2}}\produkt_{k=0}^{n-1}\Gamma(\bruch{z+k}{n}).[/mm]
> >
> > Nein, nicht ganz:
>
> Ja stimmt. Falsch abgetippt...
>
> >
> >
> [mm]f_{n}(1)=\sqrt{n}(2\pi)^{\bruch{1-n}{2}}\produkt_{k=0}^{n-1}\Gamma(\bruch{1+k}{n})[/mm]
> > .
> >
> > Offensichtlich ist [mm]f_1(1)=1[/mm], sodass du erst ab n=2 rechnen
> > musst.
> >
> > Zunächst einmal ist der letzte Faktor des Produkts immer
> > [mm]\Gamma(1)=1[/mm], daher kannst du für [mm]n\ge 2[/mm] schreiben:
> >
> >
> [mm]f_{n}(1)=\sqrt{n}(2\pi)^{\bruch{1-n}{2}}\produkt_{k=0}^{n-2}\Gamma(\bruch{1+k}{n})[/mm]
> > .
> >
> > Dann ergeben der erste un der letzte Faktor des Produkts
> >
> > [mm]\Gamma(\bruch{1}{n}) \Gamma(1-\bruch{1}{n}) = \bruch{\pi}{\sin(\pi/n)}[/mm]
> > ,
> >
> > ebenso der zweite und vorletzte Faktor:
> >
> > [mm]\Gamma(\bruch{2}{n}) \Gamma(1-\bruch{2}{n}) = \bruch{\pi}{\sin(2\pi/n)}[/mm]
> > ,
> >
> > und so weiter. Ist n gerade, so bleibt das Produkt
> >
> > [mm]\pi^{n/2} \left(\produkt_{k=1}^{n/2} \sin(\bruch{k}{n}\pi) \right)^{-1}[/mm]
Richtig: für ungerade n ist das:
[mm]\pi^{(n-1)/2} \left(\produkt_{k=1}^{(n-1)/2} \sin(\bruch{k}{n}\pi) \right)^{-1}[/mm]
> > ;
> >
> > im Fall n ungerade steht da
> >
> > [mm]\Gamma(1/2) \pi^{\lfloor n/2\rfloor }\left(\produkt_{k=1}^{\lfloor n/2\rfloor } \sin(\bruch{k}{n}\pi) \right)^{-1} = \pi^{n/2} \left(\produkt_{k=1}^{\lfloor n/2\rfloor } \sin(\bruch{k}{n}\pi) \right)^{-1}[/mm]
Hier ebenso, aber für gerade n:
[mm]\Gamma(1/2) \pi^{\lfloor (n-1)/2\rfloor }\left(\produkt_{k=1}^{\lfloor (n-1)/2\rfloor } \sin(\bruch{k}{n}\pi) \right)^{-1} = \pi^{(n-1)/2} \left(\produkt_{k=1}^{\lfloor (n-1)/2\rfloor } \sin(\bruch{k}{n}\pi) \right)^{-1}[/mm]
> > .
> >
> > Wenn du nun noch berücksichtigst, dass [mm]\sin(\pi/2)=1[/mm] und
> > [mm]\sin(\bruch{k}{n}\pi) = \sin(\pi-\bruch{k}{n}\pi) = \sin(\bruch{n-k}{n}\pi)[/mm]
> > ist, kannst du beides wieder zusammenfassen:
> >
> > [mm]\pi^{n/2} \left(\produkt_{k=1}^{n-1 } \sin(\bruch{k}{n}\pi) \right)^{-1/2}[/mm]
Und hier dann:
[mm] \pi^{(n-1)/2} \left(\produkt_{k=1}^{n-1 } \sin(\bruch{k}{n}\pi) \right)^{-1/2}[/mm]
> > .
> >
> > Vielleicht hilft dir das weiter.
>
> Leider nicht...
> Hab bisher alles verstanden und bin dabei. Hatte auch
> schonmal sowas versucht, war aber nicht weiter gekommen.
> Aber irgendwie hat sich jetzt das Problem doch nur von der
> Gamma-Funktion auf den Sinus verlagert. Und da ist mir das
> ebenfalls schleierhaft, wie das weitergehen soll.
> Wir sind jetzt momentan also bei
>
> [mm]f_{n}(1)=\sqrt{n}(2)^{\bruch{1-n}{2}}(\pi)^{\bruch{1-n}{2}}(\pi)^{\bruch{n}{2}}(\produkt_{k=1}^{n-1}sin^{-1}(\bruch{k}{n}\pi))^{\bruch{1}{2}}[/mm]
> =
> [mm]2^{\bruch{1-n}{2}}\sqrt{n\pi\produkt_{k=1}^{n-1}sin^{-1}(\bruch{k}{n}\pi)}[/mm]
> =
> [mm](\bruch{1}{2})^{\bruch{n}{2}}\sqrt{2n\pi\produkt_{k=1}^{n-1}sin^{-1}(\bruch{k}{n}\pi)}[/mm]
Hier fällt dann der Faktor [mm] $\pi$ [/mm] unter der Wurzel weg.
Du könntest wieder paarweise von vorne und von hinten multiplizieren, denn
[mm] \sin(\bruch{k}{n}\pi) * \sin(\bruch{n-1}{n}\pi) = \bruch{1}{2}\left(\cos \bruch{n-2}{n}\pi - cos \pi \right) = \bruch{1}{2}\left(\cos \bruch{n-2}{n}\pi +1 \right) [/mm] .
Probiers mal für n=5 oder so aus.
Viele Grüße
Rainer
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 01:25 Do 17.11.2011 | Autor: | skoopa |
Eine anderer Ansatz die Sache zu lösen war über die Stirling-Formel.
Die liefert, dass
[mm] \Gamma(z)=\sqrt{2\pi}z^{z-\bruch{1}{2}}e^{-z}e^{H(z)}
[/mm]
mit [mm] H(z)\to0 [/mm] für [mm] |z|\to\infty.
[/mm]
Das würde im konkreten Fall für diese Aufgabe bedeuten, dass:
[mm] f_{n}(z)=f_{n}(1)\Gamma(z)=\Gamma(z)\cdot\sqrt{n}(2\pi)^{\bruch{1-n}{2}}\produkt_{k=0}^{n-1}\Gamma(\bruch{k+1}{n})
[/mm]
[mm] =\Gamma(z)\cdot\sqrt{n}(2\pi)^{\bruch{1-n}{2}}\produkt_{k=1}^{n}[\sqrt{2\pi}(\bruch{k}{n})^{\bruch{k}{n}-\bruch{1}{2}}exp^{\bruch{-k}{n}}exp^{H(z)}
[/mm]
[mm] =\Gamma(z)\cdot\sqrt{2n\pi}exp^{nH(z)}\produkt_{k=1}^{n}e^{\bruch{k}{n}(log(\bruch{k}{n})-1)-\bruch{1}{2}log(\bruch{k}{n})}.
[/mm]
Aber auch hier ist für mich jetzt irgendwie Sackgasse...
Vielleicht hat jemand ja hierzu ne Idee.
Wäre klasse!
Beste Grüße!
skoopa
|
|
|
|