www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Ganzrationale Funktion
Ganzrationale Funktion < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ganzrationale Funktion: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:02 Do 12.10.2006
Autor: Kristof

Aufgabe
Von einer Garage aus soll eine Auffahrt zur Straße angelegt werden. Der Höhenunterschied beträgt 1 m (Strecke CD). Zwischen A und B ist eine waagerechte Stellfläche geplant, die Auffahrt soll in B waagerecht beginnen und in D waagerecht in die Straße einmünden.

Beschreiben Sie die Auffahrt durch eine ganzrationale Funktion niedrigsten Grades?  

Also wir haben das in der Schule gemacht und ich kann gerade irgendwie den Lösungsweg nicht mehr nachvollziehen.

Erstmal zur ganzrationalen Funktion niedrigsten Grades :

f (x) = [mm] ax^3 [/mm] + [mm] bx^2 [/mm] + cx + d

Dann haben wir geschrieben das gilt :

f (0) = 0
f (5) = 1
f'(0) = 0
f'(5) = 0

Daraus konnte ich den die Matrix bestimmen und hatte am Ende die Funktionsgleichung :

f (x) = [mm] -0,016x^3 [/mm] + [mm] 0,12b^2 [/mm] + 0x + 0

Mein Problem ist nun, wie die darauf gekommen sind, das f (0) = 0 usw. ist.
Das kann ich irgendwie nicht Nachvollziehen.
Habe mal eine Skizze dazu angefertigt, mit den folgenden Link könnt ihr diese sehen.  

LINK : http://www.pic-upload.de/view_12.10.06/9hcsh9.GIF.html

Also danke für eure Hilfe.


        
Bezug
Ganzrationale Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:09 Do 12.10.2006
Autor: M.Rex

Hallo Kristof

> Von einer Garage aus soll eine Auffahrt zur Straße angelegt
> werden. Der Höhenunterschied beträgt 1 m (Strecke CD).
> Zwischen A und B ist eine waagerechte Stellfläche geplant,
> die Auffahrt soll in B waagerecht beginnen und in D
> waagerecht in die Straße einmünden.
>
> Beschreiben Sie die Auffahrt durch eine ganzrationale
> Funktion niedrigsten Grades?
> Also wir haben das in der Schule gemacht und ich kann
> gerade irgendwie den Lösungsweg nicht mehr nachvollziehen.
>
> Erstmal zur ganzrationalen Funktion niedrigsten Grades :
>
> f (x) = [mm]ax^3[/mm] + [mm]bx^2[/mm] + cx + d
>
> Dann haben wir geschrieben das gilt :
>
> f (0) = 0

Die Auffahrt muss ja am Startpunkt ohne "Versatz" beginnen

>  f (5) = 1

In x=5m muss eine Höhe von y=1m überwunden werden.

> f'(0) = 0

Am Startpunkt soll der Graph ja an der waagerechten Strasse beginnen, und zwar ohne "Knick"

> f'(5) = 0

was für den Startpunkt gilt, soll ja auch für diue Fortsetzung in 5m gelten, also ohne "Knick".


Hilft dir das weiter?

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]