www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Gaußalgorithmus
Gaußalgorithmus < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gaußalgorithmus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:13 Sa 04.09.2004
Autor: DerMathematiker

Hallo Ihr,

könnt Ihr mir erzählen wie der gaußsche Algorithmus funktioniert? Ich frage nur so, weil davon hier so viel reden und ich den irgendwie nicht kenne.

MfG euer Mathematiker

        
Bezug
Gaußalgorithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 16:03 Sa 04.09.2004
Autor: PhiBa

Hallo Mathematiker,

der Gaußalgorithmus ist eine Methode der Linearen Algebra, um lineare Gleichungssysteme zu lösen, oder deren Unlösbarkeit zu beweisen.

Beispiel:

gegeben sei folgendes Gleichungssystem

[mm] 2 * x_1 + 3 * x_2 - 4 * x_3 = 2 1 * x_1 - 2 * x_2 + 0 * x_3 = 0 -1 * x_1 + 3 * x_2 - 1 * x_3 = -1 [/mm]

Dies wird nun in Form einer Matrix geschrieben:

[mm] \begin{pmatrix} 2 & 3 & -4 & | & 2 \\ 1 & -2 & 0 & | & 0 \\ -1 & 3 & -1 & | &-1 \end{pmatrix} [/mm]

Nun werden Vielfache der ersten Zeile zu den übrigen Zeilen addiert, um an der ersten Stelle jeweils eine 0 zu erhalten. D.h. zur zweiten Zeile wird das [mm] - \bruch{1}{2} [/mm] Fache der ersten Zeile addiert und zur dritten Zeile das [mm] \bruch{1}{2} [/mm] Fache der ersten Zeile:

[mm] \begin{pmatrix} 2 & 3 & -4 & | & 2 \\ 0 & -3,5 & 2 & | & -1 \\ 0 & 4,5 & -3 & | & 0 \end{pmatrix} [/mm]


Nun wird ein Vielfaches der zweiten Zeile zu der letzten Zeile addiert, um dort auch an der zweiten Stelle jeweils eine 0 zu erhalten. D.h. zur dritten Zeile wird das [mm] \bruch{9}{7} [/mm]
-(4,5 : (-3,5)) Fache der zweiten Zeile addiert.

[mm] \begin{pmatrix} 2 & 3 & -4 & | & 2 \\ 0 & -3,5 & 2 & | & -1 \\ 0 & 0 & - \bruch{3}{7} & | & - \bruch{9}{7} \end{pmatrix} [/mm]

Man hat also eine Matrix in Dreiecksform erhalten, die zu folgendem Gleichungssystem führt, das zum Anfangssystem äquivalent ist:

[mm] 2 * x_1 + 3 * x_2 - 4 * x_3 = 2 0 * x_1 - 3,5 * x_2 + 2 * x_3 = -1 0 * x_1 + 0 * x_2 - \bruch{3}{7} * x_3 = - \bruch{9}{7} [/mm]

Aus der dritten Zeile kann man direkt ablesen, dass x3 = 3 ist.
Daraus kann man dann mit der zweiten Zeile erkennen, das x2 = 2 ist
und dann kann man schließlich aus der ersten Zeile x1 = 4 berechnen.

Ebenso geht es mit beliebig großen Gleichungssystemem. Man muss durch schrittweises addieren von Vielfachen der Zeilen die Matrix in Dreiecksform bringen und dann entscheiden, ob das zugehörige Gleichungssystem lösbar ist oder nicht und dann die Lösung bestimmen.

MfG PhiBa
(mein erster Eintrag in diesem Forum, also bitte gnädig sein, falls was formal nicht passt)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]