Gebilde der Kugel < Sonstiges < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:12 Do 25.10.2007 | Autor: | tiuri |
Aufgabe | Untersuche, in welchen Gebilden die Kugel die drei Koordinatenebenen schneidet!
M(-6/-2/3) r=7 |
Da wir erst letzte Stunde mir dem Thema Kugel anfingen weiß ich nicht was das Gebilde einer Kugel ist, da ich dies nicht weiß, kann ich auch die Aufgabenstellung nicht lösen. Aber wahrscheinlich kann ich es nach Definition von "Gebilde einer Kugel" selbst lösen
Vielen dank im Voraus
Tiuri
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:18 Do 25.10.2007 | Autor: | Teufel |
Hi!
Es gibt 3 Lagebeziehungen zwischen Kugel und Ebene. Die Ebene kann die Kugel ja schneiden und das Gebilde, das entsteht, wäre ein Kreis.
Wenn die Ebene die Kugel berührt ist das Gebilde, das entsteht, ein Punkt.
Und wenn die Ebene die Kugel nicht berührt entsteht dadurch kein Gebilde.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 21:25 Do 25.10.2007 | Autor: | tiuri |
1. Danke für die schnelle Antwort
2. Würde es reichen, wenn ich einen Schnittkreis als Gebilde mit allen drei Koordinatenebenen damit begründe, dass r>x,y,z gilt und dies erläutere?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:29 Do 25.10.2007 | Autor: | Teufel |
1. Kein Problem :)
2. Ich würde sagen: ja!
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:32 Do 25.10.2007 | Autor: | tiuri |
THX
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:34 Do 25.10.2007 | Autor: | leduart |
Hallo
Man kann die Frage so auffassen, dass die Antwort "Kreise" ist, und dann ist deine Begründung ausreichend.
Viel wahrscheinlicher aber ist dass sich der oder die L. dumm ausgedrückt hat und geern die Kreise sehen will. also in der x-y Ebene [mm] (x-xm)^2+(y-ym)^2=R^2
[/mm]
oder Angabe von Mittelpkt und Radius des Kreises.
Gruss leduart
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:43 Do 25.10.2007 | Autor: | tiuri |
Hmm, kann sein, die Aufgabenstellung ist ein wenig zweideutig. Ich mach das mal, da Mathe spaß macht.
Vielen dank
Cya
|
|
|
|