www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Geometrische Ortslinie
Geometrische Ortslinie < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geometrische Ortslinie: Ansatz
Status: (Frage) beantwortet Status 
Datum: 16:25 Do 04.05.2006
Autor: planet_hell

Aufgabe
f(x)= (1-4k)x-k²x²; k>0

geometrische Ort aller Punkte mit [mm] W_{I} [/mm] paralleler Tangente

Ich habe leider überhaupt keine Idee wie ich diese Aufgabe ansetzen soll. Kann mir bitte jemand helfen?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Geometrische Ortslinie: Hinweise
Status: (Antwort) fertig Status 
Datum: 16:32 Do 04.05.2006
Autor: Roadrunner

Hallo planet_hell!


Parallel zur 1. Winkelhalbierenden bedeutet für die Steigung $f'(x) \ = \ 1$ , da die 1. Winkelhalbierende folgende Funktionsvorschrift hat: $y \ = \ x$ .


Um nun die gesuchte MBOrtskurve zu ermitteln, musst Du die 1. Ableitung gleich dem Wert $1_$ setzen und dann nach $k \ = \ ...$ umstellen.

Diesen Wert dann in die Ausgangsfunktion einsetzen.


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]