www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Gerade in Hesseform
Gerade in Hesseform < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gerade in Hesseform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:24 Mi 16.08.2006
Autor: Goldfinger

Hallo,
ich suche eine Gerade g in Hesseform (und auch in Hessenormalform) die
folgende Bedingungen erfüllt:

1. g läuft durch Punkt c
2. g senkrecht auf k

C(-3/4)

k: [mm] \vec{x}=\vektor{0 \\ 4}+\lambda \vektor{1 \\ 2} [/mm]

Wie gehe ich am besten und am einfachsten vor?
Bitte mit plausibler Erklärung.

Vielen Dank.

Gruß
Goldfinger


        
Bezug
Gerade in Hesseform: Antwort
Status: (Antwort) fertig Status 
Datum: 23:57 Mi 16.08.2006
Autor: ardik

Hallo Goldfinger,

verzeih die provokative Frage: Könnte es ein, dass Dir die Hesseform, jedenfalls ihr Sinn und Hintergrund, gänzlich ungeläufig ist...?

Ich fang mal kurz mit der Normalenform (zunächst ohne "Hesse") an:

[mm] $\vec [/mm] n * [mm] \left( \vec x - \vec a \right) [/mm] = 0$

Dabei ist [mm] $\vec [/mm] n$ der Normalenvektor, also ein beliebiger Vektor, der senkrecht auf der Geraden steht.
[mm] $\vec [/mm] a$ ist der "Stützvektor", also der Ortsvektor zu einem beliebigen Punkt auf der Geraden.
[mm] \vec{x} [/mm] ist - wie immer - der Platzhalter für alle denkbaren Ortsvektoren zu allen Punkten auf der Geraden.

Mit dieser Kenntnis solltest Du diese Normalenform schon mal aus den gegebenen Angaben bauen können.

Die Hesseform zeichnet sich nun dadurch aus, dass der Normalenvektor genau eine Länge, einen Betrag, von eins hat. Wie bekommt man diesen Hesseschen Normalenvektor [mm] $\vec{n_0}$? [/mm] Nun, angenommen, der bisherige vorhandene Normalenvektor hat eine Länge von fünf, so braucht man diesen ja nur durch 5 (also durch seinen eigenen Betrag) zu teilen und man erhält einen Vektor der Länge eins:

Beispiel:
[mm] $\left| \vec n \right| =\left| \vektor{3 \\ 4} \right| [/mm] = 5$
$ [mm] \Rightarrow \vec{n_0} [/mm] = [mm] \bruch{\vec n}{\left| \vec n \right|} [/mm] = [mm] \bruch{\vektor{3 \\ 4} }{5}=\bruch{1}{5} \vektor{3 \\ 4} [/mm] $

Genügt das für Deine Frage?


Noch was zum Hintergrund der "Hesseschen":
Die Differenz $$ ergibt ja den Verbindungsvektor zwischen den Punkten X und A (so nenne ich mal die Endpunkte der beiden entsprechenden Ortsvektoren). Wenn X auf der Geraden liegt, so liegt dieser Verbindungsvektor natürlich auch auf der Geraden und steht somit senkrecht zum Normalenvektor. Das Skalarprodukt zweier senkrecht stehender ("orthogonaler") Vektoren ist aber immer gleich null, daher: [mm] $\vec [/mm] n * ( ... ) = 0$. Liegt X nun nicht auf der Geraden, so steht dieser Verbindungsvektor auch nicht senkrecht auf [mm] \vec{n} [/mm] und das Skalarprodukt ergibt nicht null.

Noch was:
Es gibt verschiedene Schreibweisen der (Hesseschen) Normalenform. Insbesondere kann man ausmultiplizieren und [mm] $\vec [/mm] n * [mm] \vec [/mm] a$ als Skalar ausdrücken:

Beispiel *räusper*:
[mm] $\vektor{1\\2}\left[\vec x - \vektor{-3\\4}\right]=0$ [/mm]
[mm] $\gdw \vektor{1\\2}*\vec [/mm] x - [mm] \vektor{1\\2}*\vektor{-3\\4}=0$ [/mm]
[mm] $\gdw \vektor{1\\2}*\vec [/mm] x - 5=0$
[mm] $\gdw \vektor{1\\2}*\vec [/mm] x =5$

Die Schreibweise der letzten beiden Zeilen, in der der Stützvektor [mm] \vec{a} [/mm] gar nicht mehr erkennbar ist, sieht man recht oft.

Und weil ich gerade dabei bin: Man kann natürlich noch weiter umformen:
[mm] $\gdw 1*x_1+2*x_2 [/mm] =5$
und schon hat man aus derNormalenform eine Koordinatenform gemacht, aber das nur am Rande...

Um aus dem bisher nicht-Hesseschen Beispiel eine Hessesche Normalenform zu machen, muss man vor den Normalenvektor [mm] $\vektor{1\\2}$ [/mm] freilich noch den Faktor [mm] $\bruch{1}{\wurzel{5}}$ [/mm] setzen (und das ggf. beim späteren Ausmultiplizieren etc. weiter berücksichtigen).

So. Lange Epistel.
Hoffe, sie hat weiter geholfen.

Schöne Grüße,
ardik

Bezug
                
Bezug
Gerade in Hesseform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:24 Do 17.08.2006
Autor: Goldfinger

Hallo,
vielen Dank ersteinmal für die schnelle Hilfe.

Nochmal zurück zur Problematik:

Die Hesseform:
[mm] \vec{n}*(\vec{x}-\vec{a})=0 [/mm]
oder
n1(x1-a1)+n2(x2-a2)=0

Jetzt Bezug zu meiner Aufgabenstellung:
Kann man als Aufpunkt bzw. Ortsvektor [mm] \vec{a} [/mm] den Punkt C aus meiner Aufgabe nehmen?
Kann man als Ortsvektor [mm] \vec{x} [/mm] den Aufpunkt von k: aus meiner Aufgabe nehmen?

So hieße die Gleichung:
n1(-3-0)+n2(4-4)=0
und der Normalvektor wäre folgender:

[mm] \vec{n}=\vektor{n1 \\ n2}=\vektor{0 \\ beliebig} [/mm]

Gesucht war ja eine Gerade in Hesseform die zwei Bedingungen erfüllen sollte:
1. Gerade läuft durch den Punkt c
2. Gerade ist senkrecht auf k

Sind die folgenden Schritte jetzt richtig?
Ich setze ein in die Hesseform: den [mm] \vec{n} [/mm] und den Punkt c:
0(x1-3)+1(x2-4)=0
x2-4=0

Noch eine Frage zum Normalvektor:
Der Normalvektor bei einer Ebene ist das Kreuzprodukt der Richtungsvektoren?

Vielen Dank
Goldfinger

Bezug
                        
Bezug
Gerade in Hesseform: Normalenvektor falsch
Status: (Antwort) fertig Status 
Datum: 12:46 Do 17.08.2006
Autor: Roadrunner

Hallo Goldfinger!



> Kann man als Aufpunkt bzw. Ortsvektor [mm]\vec{a}[/mm] den Punkt C
> aus meiner Aufgabe nehmen?

[ok] Genau richtig!


> Kann man als Ortsvektor [mm]\vec{x}[/mm] den Aufpunkt von k: aus
> meiner Aufgabe nehmen?

[notok] Nein, da wir ja gar nicht wissen, ob die gesuchte Gerade durch diesen Punkt verläuft.

  

>  und der Normalvektor wäre folgender:
>  
> [mm]\vec{n}=\vektor{n1 \\ n2}=\vektor{0 \\ beliebig}[/mm]

[notok] Damit die gesuchte Gerade auch senkrecht auf die Gerade $k_$ steht, müssen auch die Normalenvektoren senkrecht aufeinander stehen.

In Deinem Falle ist es noch einfacher: der Richtungsvektor der Geraden $k_$ ist gleich der Normalenvektor der gesuchten Gerade $g_$ .


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]