www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Geradengleichung bestimmen
Geradengleichung bestimmen < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geradengleichung bestimmen: Vorgehensweise
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 18:44 Mi 28.05.2008
Autor: Jule_

Ich soll zu einer vorgegebenen Ebenengleichung in Parameterforem

a) eine Geradengleichung für eine Gerade g angeben, die die Ebene in einem Punkt schneidet
b) parallel zur Ebene ist und nicht in E liegt
c) in E liegt

a) [mm] \vec{x}=\vec{p}+t*????? [/mm]

keine Ahnung wie ich auf den Richtungsvektor komme

[mm] b)\vec{x}=t*\vec{u} [/mm] oder [mm] \vec{v} [/mm] einer der Richtungsvektoren aus der Ebenengleichung
- ist das richtig??

c) [mm] \vec{x}=\vec{p}+t*\vec{u} [/mm] oder [mm] \vec{v} [/mm] einer der Richtungsvektoren aus der Ebenengleichung
- ist das richtig??




        
Bezug
Geradengleichung bestimmen: Anregungen
Status: (Antwort) fertig Status 
Datum: 19:10 Mi 28.05.2008
Autor: Valaina

Hallo Jule. Ich versuche dir mal zu helfen, da wir Vektoren erst kürzlich durchgenommen haben:

zu a) [mm] \vec{x}= \vec{p} [/mm] + [mm] t*\vec{r} [/mm] . [mm] \vec{r} [/mm] ist hierbei ein Vektor, der unabhängig von den beiden Spannvektoren der Ebene ist, also nicht aus den beiden zusammengesetzt werden kann. Falls du eine beliebige, die Ebene schneidende Gerade haben willst, ist es am einfachsten, den Normalenvektor der Ebene als Richtungsvektor der Gerade zu verwenden.

zu b) und c)  Aus den beiden Spannvektoren der Ebene kann man sich einen Vektor aussuchen, der dann der Richtungsvektor der Gerade wird. Alternativ ginge natürlich jeder von [mm] \vec{u} [/mm] und [mm] \vec{v} [/mm] abhängige (zusammengesetzte) Vektor.
Ob die Gerade dann außerhalb oder in der Ebene liegt, hängt vom Stützvektor [mm] \vec{p} [/mm] der Gerade ab. Ist [mm] \vec{p} [/mm] der Ortsvektor eines Punktes der Ebene, so liegt die Gerade darin, für alle anderen [mm] \vec{a} [/mm] liegt sie außerhalb.

Bezug
                
Bezug
Geradengleichung bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:42 Mi 28.05.2008
Autor: Jule_


> Hallo Jule. Ich versuche dir mal zu helfen, da wir Vektoren
> erst kürzlich durchgenommen haben:
>  
> zu a) [mm]\vec{x}= \vec{p}[/mm] + [mm]t*\vec{r}[/mm] . [mm]\vec{r}[/mm] ist hierbei
> ein Vektor, der unabhängig von den beiden Spannvektoren der
> Ebene ist, also nicht aus den beiden zusammengesetzt werden
> kann. Falls du eine beliebige, die Ebene schneidende Gerade
> haben willst, ist es am einfachsten, den Normalenvektor der
> Ebene als Richtungsvektor der Gerade zu verwenden.
>  
> zu b) und c)  Aus den beiden Spannvektoren der Ebene kann
> man sich einen Vektor aussuchen, der dann der
> Richtungsvektor der Gerade wird. Alternativ ginge natürlich
> jeder von [mm]\vec{u}[/mm] und [mm]\vec{v}[/mm] abhängige (zusammengesetzte)
> Vektor.
> Ob die Gerade dann außerhalb oder in der Ebene liegt, hängt
> vom Stützvektor [mm]\vec{p}[/mm] der Gerade ab. Ist [mm]\vec{p}[/mm] der
> Ortsvektor eines Punktes der Ebene, so liegt die Gerade
> darin, für alle anderen [mm]\vec{a}[/mm] liegt sie außerhalb.


Danke!! Dann lag ich mit meiner Lösung für b) und c) richtig oder?

Bezug
                        
Bezug
Geradengleichung bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:54 Mi 28.05.2008
Autor: Valaina

Ja, im Prinzip lagst du richtig. Allerdings muss bei dem Fall "Die Gerade ist parallel zu der Ebene, liegt aber nicht in der Ebene" noch [mm] \vec{p} [/mm] ergänzt werden. Da die Ebene auch durch den Nullpunkt gehen könnte, wäre [mm] \vec{x}= t*\vec{u} [/mm] nicht ganz korrekt - ist der Urprung ein Punkt der Ebene, so läge diese Gerade trotzdem in der Ebene.
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]