Geschwindigkeitsfunktion < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:44 Do 22.05.2008 | Autor: | Lara90 |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Aufgabe | Zwischen zwei Ampeln
Hier wird eine PKW-Fahrt beschrieben:
Gleichmäßige Beschleunigung // Von 0 auf 50 km/h // in 8 Sekunden
Weiterfahrt // Konstante 50 km/h // Für 12 Sekunden
Gleichmäßige Beschleunigung // Von 50 auf 70 km/h // In 6 Sekunden
Weiterfahrt // Konstante 70 km/h // in 14 Sekunden
Gleichmäßiges Abbremsen //Von 70 auf 0 km/h // In 16 Sekunden
Aufgaben:
1. Skizzieren Sie die Geschwindigkeitsfunktion:
x-Achse: 10s 2,5cm
y-Achse: 10km/h 1cm
2. Schraffieren Sie die Fläche zwischen der Funktion und der x-Achse
3. Berechnen Sie die schraffierte Fläche, indem Sie die Gesamtfläche in Rechteck-, Dreieck-
und Trapezflächen aufteilen, die Sie mit den entsprechenden Formeln aus der
Geometrie berechnen können.
4. Berechnen Sie die km/h in m/s um und führen Sie die Änderung für die berechnete Gesamtfläche durch.
5. Formulieren Sie eine Frage, auf die Ihre soeben berechnete Gesamtfläche die Antwort ist.
6. Die Flächenberechnung war bei dieser Aufgabe nicht besonders schwierig. In welchen
Fällen hätten Sie große Probleme die Fläche zwischen der Funktion und der x-Achse zu
berechnen?
|
Hallo ;)
Ich habe ein rieesen Problem und zwar haben wir heute von unserer Lehrerin diesen Zettel bekommen, eine Sonderaufgabe die wir vollständig gelöst Montag abgeben müssen und dann benotet wird,
allerdings haben wir dieses Thema noch nicht durchgenommen und ich habe absolut keine Idee wie ich diese Aufgaben lösen kann.
Ich hoffe ihr könnt mir da irgendwie weiter helfen....
|
|
|
|
> Hier wird eine PKW-Fahrt beschrieben:
>
> Gleichmäßige Beschleunigung // Von 0 auf 50 km/h // in 8
> Sekunden
> Weiterfahrt // Konstante 50 km/h // Für 12 Sekunden
> Gleichmäßige Beschleunigung // Von 50 auf 70 km/h // In 6
> Sekunden
> Weiterfahrt // Konstante 70 km/h // in 14 Sekunden
> Gleichmäßiges Abbremsen //Von 70 auf 0 km/h // In 16
> Sekunden
>
>
> Aufgaben:
>
> 1. Skizzieren Sie die Geschwindigkeitsfunktion:
> x-Achse: 10s 2,5cm
> y-Achse: 10km/h 1cm
>
> 2. Schraffieren Sie die Fläche zwischen der Funktion und
> der x-Achse
>
> 3. Berechnen Sie die schraffierte Fläche, indem Sie die
> Gesamtfläche in Rechteck-, Dreieck-
> und Trapezflächen aufteilen, die Sie mit den
> entsprechenden Formeln aus der
> Geometrie berechnen können.
>
> 4. Berechnen Sie die km/h in m/s um und führen Sie die
> Änderung für die berechnete Gesamtfläche durch.
>
> 5. Formulieren Sie eine Frage, auf die Ihre soeben
> berechnete Gesamtfläche die Antwort ist.
>
> 6. Die Flächenberechnung war bei dieser Aufgabe nicht
> besonders schwierig. In welchen
> Fällen hätten Sie große Probleme die Fläche zwischen der
> Funktion und der x-Achse zu
> berechnen?
>
> Hallo ;)
> Ich habe ein rieesen Problem und zwar haben wir heute von
> unserer Lehrerin diesen Zettel bekommen, eine Sonderaufgabe
> die wir vollständig gelöst Montag abgeben müssen und dann
> benotet wird,
> allerdings haben wir dieses Thema noch nicht durchgenommen
> und ich habe absolut keine Idee wie ich diese Aufgaben
> lösen kann.
> Ich hoffe ihr könnt mir da irgendwie weiter helfen....
Hallo Lara,
Zuerst solltest du dir die beschriebene Grafik des Geschwindigkeitsverlaufs
exakt aufzeichnen: Zeitachse nach rechts, Geschwindigkeit nach oben.
Der Graph ist ein Streckenzug: Von (0/0) über die Punkte (8/50), (20/50)
etc. bis zum Endpunkt (56/0).
Das Wesentliche für die Aufgabe ist dann, dass man aus den gefahrenen
Geschwindigkeiten auf die zurückgelegte Wegstrecke schliessen kann.
Es gilt ja (bei konstanter Geschwindigkeit v) die Formel s = v * t
Für die 12 Sekunden dauernde Fahrt mit konstanten 50 km/h ist also
die zurückgelegte (Teil-)Strecke s = v * t = 50 km/h * 12 s. Das rechnet
man am besten alles auf die Standardeinheiten (Meter, Sekunden) um.
Grafisch ist nun wichtig: Das Produkt v*t entspricht dem Flächeninhalt
des Rechtecks mit den Ecken (8/0),(20,0),(20/50),(8/50) unter der
entsprechenden Teilstrecke des Graphs.
Dasselbe gilt auch für die schrägen Teilstrecken! Die in der ersten
Beschleunigungsphase von 0 auf 50 km/h zurückgelegte Strecke
entspricht dem Flächeninhalt des Dreiecks (0/0), (8/0),(8/50).
Der gesamte Flächeninhalt zwischen dem Graph und der Zeitachse
ergibt die gesamte Strecke von der Ausgangsposition bei der ersten Ampel
bis zum Stopp vor der zweiten Ampel.
Viel Erfolg ! al-Chwarizmi
|
|
|
|