www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - (Gleichmäßige) Stetigkeit
(Gleichmäßige) Stetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

(Gleichmäßige) Stetigkeit: Aufgabe
Status: (Frage) überfällig Status 
Datum: 20:32 Di 24.11.2009
Autor: icarus233

Aufgabe
Untersuchen Sie die folgende Funktion auf Stetigkeit und gleichmäßige Stetigkeit:
$f: [mm] \IR \to \IR, f(x)=1+\bruch{x^2}{1+|x|}$ [/mm]

Hallo,

ich stehe aktuell vor der genannten Aufgabe und komme nicht so recht weiter. Die Stetigkeit glaube ich nachgeweiesen zu haben. Jedoch fehlt mir bei der gleichmäßigen Stetigkeit die Idee für den Ansatz.

Mein Beweis zur Stetigkeit
[mm] $\forall \varepsilon [/mm] > 0 [mm] \exists \delta(\varepsilon) [/mm] > 0 [mm] \forall [/mm] x [mm] \varepsilon \IR$ [/mm]

$ [mm] |x-x_0| [/mm] < [mm] \delta \Rightarrow [/mm] f(x) - [mm] f(x_0) [/mm] < [mm] \varepsilon [/mm] $
$ [mm] \Rightarrow |(1+\bruch{x^2}{1+|x|}) [/mm] - [mm] (1+\bruch{x_0^2}{1+|x_0|})| [/mm] < [mm] \varepsilon [/mm] $
$ [mm] \Rightarrow |\bruch{x^2}{1+|x|} [/mm] - [mm] \bruch{x_0^2}{1+|x_0|}| [/mm] < [mm] \varepsilon [/mm] $
Den Bruch zusammenführen:
$ [mm] \Rightarrow |\bruch{x^2(1+|x_0|)-x_0^2(1+|x|)}{(1+|x|)(1+|x_0|)}| [/mm] < [mm] \varepsilon [/mm] $
Da der Nenner größer Null sein muss, können wir ohne Beeinträchtigung der Ungeleichung schreiben:
$ [mm] \Rightarrow |x^2(1+|x_0|)-x_0^2(1+|x|) [/mm] < [mm] \varepsilon (1+|x|)(1+|x_0|) [/mm] $
Setze nun $ [mm] \varepsilon_a [/mm] = [mm] \varepsilon (1+|x|)(1+|x_0|)| [/mm] $, sodass gilt:
$ [mm] \Rightarrow |x^2(1+|x_0|)-x_0^2(1+|x|)| [/mm] < [mm] \varepsilon_a [/mm] $

$ [mm] \Rightarrow (x^2-x_0^2) [/mm] + [mm] (x^2|x_0|-x_0^2|x|) [/mm] < [mm] \varepsilon_a [/mm] $

Daraus wird ersichtlich, dass wenn ein beliebiges aber festes [mm] \varepsilon [/mm] gegeben ist, sich immer zu einem [mm] $x_0$ [/mm] entsprechend nahe liegende $x$ finden lassen, sodass die linke Seite beliebig klein wird und daher die Ungleichung erfüllt wird. Damit ist die Stetigkeit bewiesen (?).

Zum Thema gleichmäßgie Stetigkeit:
Ich habe mich bei Wikipedia und im Netz umgesehen, jedoch bin ich mir nicht sicher, ob ich die gleichmäßige Stetigkeit richtig verstanden habe, daher mein Erklärungsversuch:

Die "normale Stetigkeit" behandelt nur die Stetigkeit in einem Punkt (daher [mm] $\delta$ [/mm] ist in Abhängigkeit von [mm] $x_0$ [/mm] und [mm] $\varepsilon$) [/mm] und bei der gleichmäßigen Stetigkeit ist [mm] $\delta$ [/mm] nur in Abhängigkeit von [mm] $\varepsilon$. [/mm]

Auf []Wikipedia wird das ganze anschaulich mit einem Rechteck erklärt, dessen senkrechte Seite [mm] $\varepsilon$ [/mm] und horizontale Seite [mm] $\delta$ [/mm] ist. Wenn man ein Rechteck konstruieren kann, sodass man dieses entlang dem Graphen verschieben kann, sodass der Graph nie durch eine horizontale sondern nur durch eine senkrechte Seite bricht, dann ist gleichmäßige Stetigkeit gegeben. Sofern der Graph aber durch eine horizontale Seite bricht haben wir keine gleichmäßige Stetigkeit.

[Dateianhang nicht öffentlich]

Ich habe hier mal versucht das auf $ [mm] f(x)=x^2 [/mm] $ anzuwenden, was ja nicht gleichmäßig stetig ist - ist das so richtig umgesetzt?

Nun zur eigentlichen Aufgabe

Hier habe ich nun leider gar keine Idee, wie ich das beweise. In einem Beispiel hatten wir [mm] $\delta=\varepsilon^2$ [/mm] gesetzt, sodass man das im Zusammenhang mit dem Funktionsterm [mm] ($f(x)=\wurzel(x)$) [/mm] auflösen konnte. Ich sehe hier aber keine Möglichkeit das ähnlich durchzuführen.


Ich wäre für einige hilfreiche Hinweise sehr dankbar! :-)





Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
(Gleichmäßige) Stetigkeit: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Sa 28.11.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]