www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - Gleichsetzen
Gleichsetzen < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichsetzen: Schnittpunkt
Status: (Frage) beantwortet Status 
Datum: 17:02 So 06.11.2011
Autor: tinaxXxX

Aufgabe
Zeigen Sie an einem selbst gewählten Dreieck rechnerisch, dass sich die drei Seitenhalbierenden in einem Punkt schneiden. (Es handelt sich dabei um den Schwerpunkt der Dreiecksfläche)

Wie rechne ich den Schnittpunkt der drei Seitenhalbierenden aus? Ich habe ein Dreieck im Koordinatensystem gewählt mit den Punkten A( 0/0), B(5/0), C(3/3). Danach habe ich die Mittelpunkte der jeweiligen Strecken ausgerechnet und dann die Gleichungen aufgestellt. g: y=3/8x  h: y= 6x-15 l: y=-3/7x.
Anschließend habe ich g mit h; h mit l und l mit g gleichgesetzt. Ich bin davon ausgegangen dass ich so den gleichen Schnittpunkt nachweisen kann, doch ich bekomm immer unterschiedliche x und y-Werte raus-.-

        
Bezug
Gleichsetzen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:49 So 06.11.2011
Autor: Steffi21

Hallo, die Gerade l ist nicht korrekt, sie lautet [mm] f(x)=-\bruch{3}{8}x+\bruch{15}{7} [/mm] sie verläuft durch die Punkte (1,5;1,5) und (5;0)
Steffi

Bezug
        
Bezug
Gleichsetzen: Schnittpunkt
Status: (Frage) beantwortet Status 
Datum: 19:04 So 06.11.2011
Autor: tinaxXxX

Aufgabe
Zeigen Sie an einem selbst gewählten Dreieck rechnerisch, dass sich die drei Seitenhalbierenden in einem Punkt schneiden. (Es handelt sich dabei um den Schwerpunkt der Dreiecksfläche)

Erstmal vielen Dank:)
Allerdings bekomme ich auch mit der jetzt richtig geänderten Form der Gleichung nicht auf die gleichen Schnittpunkte...
(g: y=3/8x; h: y=-3/8x+15/7; l:y= 6x-15)

An was liegt das?

Bezug
                
Bezug
Gleichsetzen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:12 So 06.11.2011
Autor: Steffi21

Hallo, die drei Gleichungen sind ok, setze jeweils gleich:

(1) [mm] \bruch{3}{8}x=6x-15 [/mm]

(2) [mm] \bruch{3}{8}x=-\bruch{3}{7}x+\bruch{15}{7} [/mm]

(3) [mm] 6x-15=-\bruch{3}{7}x+\bruch{15}{7} [/mm]

die Schnittstelle ist [mm] x=\bruch{24}{9} [/mm]

du hast deine Rechnungen nicht eingestellt, so kann ich dir nicht beantworten, wo dein Fehler liegt

Steffi



Bezug
                        
Bezug
Gleichsetzen: fehler?
Status: (Frage) beantwortet Status 
Datum: 19:27 So 06.11.2011
Autor: tinaxXxX

Aufgabe
Zeigen Sie an einem selbst gewählten Dreieck rechnerisch, dass sich die drei Seitenhalbierenden in einem Punkt schneiden. (Es handelt sich dabei um den Schwerpunkt der Dreiecksfläche)

I-wie komm ich net auf deine 24/9 :D wenn ich die gleichsetze dann kommt bei mir des hier raus:

-3/7x +15/7 = 6x-15                        /+3/7x
15/7            = 44/7x -15                  /+15
120/7          =44/7x                         /*44/7
840/308      =x

y=15/11

Bezug
                                
Bezug
Gleichsetzen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:34 So 06.11.2011
Autor: Steffi21

Hallo, du beginnst also mit (3)

[mm] -\bruch{3}{7}x+\bruch{15}{7}=6x-15 [/mm]

[mm] \bruch{15}{7}=\bruch{45}{7}x-15 [/mm]

bedenke: 6*7+3=45

Vorschlag: möchtest du nicht mit Brüchen rechnen, so multipliziere die Gleichung zunächst mit 7

Steffi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]