www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Gleichung einer Tangente in P
Gleichung einer Tangente in P < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung einer Tangente in P: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:12 So 23.10.2011
Autor: Apfelchips

Aufgabe
Gegeben ist die Funktion f mit f(x) = [mm] \bruch{1}{4}x^{3} [/mm] - [mm] \bruch{3}{4}x^{2} [/mm]
Bestimmen Sie die Gleichung der Tangente t im Punkt [mm] P(1|-\bruch{1}{2}). [/mm]

Ist meine Lösung korrekt?

y = m * x + b
f'(x) = [mm] 0,75x^{2} [/mm] - 1,5x
f'(1) = -0,75 = m

-0,5 = -0,75 * 1 + b
b = 0,25

t(x) = -0,75x + 0,25

        
Bezug
Gleichung einer Tangente in P: sieht gut aus
Status: (Antwort) fertig Status 
Datum: 12:18 So 23.10.2011
Autor: Loddar

Hallo Apfelchips!


Eine Bitte vorneweg: für neue / eigenständige Aufgaben bitte auch einen neuen / eiegenständigen Thread eröffnen - danke.


Deine Lösung sieht sonst sehr gut aus. [ok]


Gruß
Loddar


Bezug
                
Bezug
Gleichung einer Tangente in P: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:30 So 23.10.2011
Autor: Apfelchips

Hallo Loddar!

> Eine Bitte vorneweg: für neue / eigenständige Aufgaben
> bitte auch einen neuen / eiegenständigen Thread eröffnen
> - danke.

Sorry, da hatte ich mich vertan. Ich verspreche Besserung. ;-)

> Deine Lösung sieht sonst sehr gut aus. [ok]

Klasse. Danke für die schnelle Antwort!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]