Gleichung für Komplexe Zahl < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:50 Mi 14.05.2014 | Autor: | lapeiluw |
Aufgabe | Lösen SIe die Gleichung [mm] (z + 2i)^3 = 27 [/mm] über [mm] \IC [/mm] und zeichnen Sie die Lösungsmenge in der Gaußschen Zahlenebene ein. |
Hallo zusammen,
wir stoßen nach verschiedenen möglichen Vorgehensweisen die Gleichung zu lösen immer auf irgendwelche Probleme. Deshalb stellen wir hier die Frage zur Diskussion und würden uns über konstruktive Hilfe sehr freuen.
Unsere bisherigen Ansätze waren, da [mm] z [/mm] mit [mm] z = x + iy [/mm] in [mm] \IC [/mm] gegeben ist, diesen Ausdruck einzusetzen und auszumultiplizieren. Dies führt jedoch zu einem recht langen Ausdruck, den wir nicht mehr weiter auflösen können. Deshalb verworfen!
Zweite Idee: mit der folgenden Umschreibung von z zu arbeiten [mm] z = r*e^{i \varphi} [/mm] . Multipliziert man nun mit diesem Ausdruck aus, erhalten wir:
[mm] r^3e^{3i \varphi} + 6r^2e^{2i \varphi} - 12re^{i \varphi} - 8i = 27 [/mm]
Und damit sind wir mit unseren Ideen schon am Ende. Wie weiter auflösen? GIbt es allgemein beim Auflösen von Gleichungen in [mm] \IC [/mm] eine fast immer funktionierende Vorgehensweise?
Vielen Dank,
Grüße von lapeilüw
|
|
|
|
Hallo lapeiluw,
> Lösen SIe die Gleichung [mm](z + 2i)^3 = 27[/mm] über [mm]\IC[/mm] und
> zeichnen Sie die Lösungsmenge in der Gaußschen
> Zahlenebene ein.
> Hallo zusammen,
> wir stoßen nach verschiedenen möglichen Vorgehensweisen
> die Gleichung zu lösen immer auf irgendwelche Probleme.
> Deshalb stellen wir hier die Frage zur Diskussion und
> würden uns über konstruktive Hilfe sehr freuen.
>
> Unsere bisherigen Ansätze waren, da [mm]z[/mm] mit [mm]z = x + iy[/mm] in
> [mm]\IC[/mm] gegeben ist, diesen Ausdruck einzusetzen und
> auszumultiplizieren. Dies führt jedoch zu einem recht
> langen Ausdruck, den wir nicht mehr weiter auflösen
> können. Deshalb verworfen!
>
> Zweite Idee: mit der folgenden Umschreibung von z zu
> arbeiten [mm]z = r*e^{i \varphi}[/mm] . Multipliziert man nun mit
> diesem Ausdruck aus, erhalten wir:
>
> [mm]r^3e^{3i \varphi} + 6r^2e^{2i \varphi} - 12re^{i \varphi} - 8i = 27[/mm]
>
> Und damit sind wir mit unseren Ideen schon am Ende. Wie
> weiter auflösen? GIbt es allgemein beim Auflösen von
> Gleichungen in [mm]\IC[/mm] eine fast immer funktionierende
> Vorgehensweise?
Eine Vorgehensweise die immer bei solchen Gleichungen funtkioniert,
ist die Anwendung der Moive-Formel.
Setze hjier [mm]w:=z+2i[/mm]. Dann snd zunächst die Lösungen von
[mm]w^{3}=27[/mm]
mit Hilfe der genannten Formel zu bestimmen.
> Vielen Dank,
> Grüße von lapeilüw
Gruss
MathePower
|
|
|
|