www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - Gleichung lösen
Gleichung lösen < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung lösen: Ansatz
Status: (Frage) beantwortet Status 
Datum: 08:23 Sa 19.01.2013
Autor: Lewser

Aufgabe
Lösen sie nach x auf:

[mm] \bruch{12x}{x^{2}+x-6}-2=\bruch{x+1}{x-2} [/mm]

Meine Ansatz dazu ist:

-2 auf der linken Seite erweitern, damit ich auf beiden Seiten nur einen Bruch stehen habe, jeweils mit dem Nenner der gegenüberliegenden Seite multiplizieren, dann ausmultiplizieren, sortieren und je nach Ergebnis Polynomdivision und/oder pq-Formel ...

Die R3echnung dazu kann ich noch nicht hinschreiben, da ich vorhin einen Fehler gemacht habe und jetzt parallel zur Fragestellung noch einmal neu rechnen muss.

Meine Frage wäre zusätzlich: irgendwie habe ich das Gefühl es geht wesentlich einfacher ... stimmt das oder täusche ich mich?

        
Bezug
Gleichung lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:40 Sa 19.01.2013
Autor: Diophant

Hallo Lewser,

> Lösen sie nach x auf:
>
> [mm]\bruch{12x}{x^{2}+x-6}-2=\bruch{x+1}{x-2}[/mm]
> Meine Ansatz dazu ist:
>
> -2 auf der linken Seite erweitern, damit ich auf beiden
> Seiten nur einen Bruch stehen habe, jeweils mit dem Nenner
> der gegenüberliegenden Seite multiplizieren, dann
> ausmultiplizieren, sortieren und je nach Ergebnis
> Polynomdivision und/oder pq-Formel ...
>
> Die R3echnung dazu kann ich noch nicht hinschreiben, da ich
> vorhin einen Fehler gemacht habe und jetzt parallel zur
> Fragestellung noch einmal neu rechnen muss.
>
> Meine Frage wäre zusätzlich: irgendwie habe ich das
> Gefühl es geht wesentlich einfacher ... stimmt das oder
> täusche ich mich?

Auf der einen Seite: ja, es geht einfacher. Auf der anderen Seite hast du aber gleich zu Beginn einen entscheidenden Schritt vergessen.

Bei einer Bruchgleichung sollte man, bevor man anfängt zu rechnen, die Definitionsmenge angeben. Diese besteht aus allen reellen zahlen mit Ausnahme sämtlicher Nennernullstellen.

Dann würde ich auch die Differenz auf der linken Seite zusammenfassen. Hernach aber nicht mit beiden Einzelnennern multiplizieren, sondern mit dem Hauptnenner. Dieser ist per Definition der kleinste gemeinsame Nenner und man findet ihn bekanntlich mit Hilfe der Vereinigungsmenge der Primfaktoren, das ist bei Polynomen nicht anders wie bei Zahlen.

Es müsste dann eine quadratische Gleichung entstaehen, die man bspw. mit der pq-Formel lösen kann. Die Lösungen dieser Gleichung muss man aber noch daraufhin überprüfen, ob sie auch Lösungen der Bruchgleichung sind. Sie sind es, wenn sie in der Definitionsmenge enthalten sind. Der Grund hierfür ist ein enfacher: du multiplizierst mit einem Term, der Nullstellen besitzt, um die Nenner wegzubekommen. Es bleibt ja gar nichts anderes übrig, als dies zu tun. Aber es ist eben wieder eine nichtäquivalente Umformung, und wieder eine von der Sorte, die einem zusätzliche Scheinlösungen beschert.


Gruß, Diophant


Bezug
                
Bezug
Gleichung lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:47 Sa 19.01.2013
Autor: Lewser

Ah super, stimmt. Danach habe ich ja gestern im Prinzip schon gefragt. Dann fällt eine Lösung von mir weg, Vielen Dank!

Bezug
                        
Bezug
Gleichung lösen: Achtung: Fehler!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:56 Sa 19.01.2013
Autor: Diophant

Hallo Lewser,

> Ah super, stimmt. Danach habe ich ja gestern im Prinzip
> schon gefragt. Dann fällt eine Lösung von mir weg, Vielen
> Dank!

Das sehe ich anders. Ich habe gerade durchgerechnet und erhalte zwei Lösungen für die Gleichung, nämlich

[mm] \IL=\{-1;3\} [/mm]


Gruß, Diophant


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]