www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Gleichungen
Gleichungen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichungen: Wie löst man das?
Status: (Frage) beantwortet Status 
Datum: 13:51 So 02.12.2007
Autor: drahmas

Aufgabe
(2x - 1)² + (x + 2)² = 0
(4x² - 4x + 1) + (x² + 4x + 4) = 0

Hallo,

verstehe einen Rechenschritt nicht ganz.
Woher kommen die 4x in der zweiten Zeile?
2x zum Quadrat ist klar = 4x², warum dann aber nochmal nur 4x?
Was passiert mit -1? Warum wird daraus +1?
In der zweiten Klammer die das Gleiche ... Warum auf einmal 4x?

Wer kann mir das bitte kurz erklären?

Danke und schöne Grüße,
Andi

        
Bezug
Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:56 So 02.12.2007
Autor: alien

hallo.
das sind binomische formeln:

1.
(a+b)² = a² + 2ab + b²

2.
(a-b)² = a² -2ab +b²


falls du eine formelsammlung hast, schau da mal rein, das muss das auch drin stehen!

lg, nicole

Bezug
        
Bezug
Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:29 So 02.12.2007
Autor: Blech


> (2x - 1)² + (x + 2)² = 0
>  (4x² - 4x + 1) + (x² + 4x + 4) = 0
>  
> Hallo,
>  
> verstehe einen Rechenschritt nicht ganz.
>  Woher kommen die 4x in der zweiten Zeile?
>  2x zum Quadrat ist klar = 4x², warum dann aber nochmal nur
> 4x?
>  Was passiert mit -1? Warum wird daraus +1?
>  In der zweiten Klammer die das Gleiche ... Warum auf
> einmal 4x?
>  
> Wer kann mir das bitte kurz erklären?

[mm] $(2x-1)^2=(2x-1)(2x-1)=2x(2x-1)-1(2x-1)=(4x^2 [/mm] - [mm] 2x)-(2x-1)=4x^2-4x+1$ [/mm]

allgemein gilt:
[mm] $(x+y)^2=(x+y)(x+y)=x(x+y)+y(x+y)=$ [/mm]
Das folgt aus dem Distributivgesetz ((b+c)a=ba+ca; hier ist a=(x+y), b=x, c=y)

[mm] $=x^2 [/mm] + xy + yx + [mm] y^2=x^2+2xy+y^2$ [/mm]
und nochmal das Distributivgesetz, diesmal ist a=x (bzw. a=y beim zweiten Summanden) und b=x, c=y. Und dann das Kommutativgesetz, deswegen ist xy=yx

d.h.
[mm] $(x+y)^2=x^2 [/mm] + 2xy + [mm] y^2$ [/mm]
das ist die erste binomische Formel. (Die Teile werden Dir noch *oft* begegnen, deswegen haben sie Namen, und deswegen merkt man sie sich als feste Formeln, anstatt immer wie oben auszumultiplizieren =)

Die zweite binomische Formel folgt direkt aus der ersten:
[mm] $(x-y)^2=(x [/mm] + [mm] (-y))^2 [/mm] = [mm] x^2 [/mm] + 2x(-y)+ [mm] (-y)^2 [/mm] = [mm] x^2 [/mm] - 2xy + [mm] y^2$ [/mm]
d.h.
[mm] $(x-y)^2=x^2 [/mm] -2xy [mm] +y^2$ [/mm]

Und die dritte binomische Formel ist wieder ausmultiplizieren:
$(x+y)(x-y)= x(x-y) + y(x-y)= [mm] x^2 [/mm] - xy + yx [mm] -y^2 [/mm] = [mm] x^2-y^2$ [/mm]
d.h.
[mm] $(x+y)(x-y)=x^2-y^2$ [/mm]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]