www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - Gleichungen nach X auflösen
Gleichungen nach X auflösen < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichungen nach X auflösen: "hoch X" nach X auflösen
Status: (Frage) beantwortet Status 
Datum: 09:30 Do 24.07.2008
Autor: tom1985

Hallo liebe Community,

ich habe hier eine Aufgabe, bei denen ich nicht weiß, wie man genau nach X auflöst.

[mm] ((\bruch{1}{2})^x*(\bruch{1}{2})^2)^x [/mm] = [mm] (\bruch{1}{2})^3 [/mm]

Die Lösung bietet das wie folgt an:

Schritt 1 ==>

[mm] x^2+2x [/mm] = 3

Schritt 2 ==>

[mm] x^2+2x-3 [/mm] = 0

Schritt 3 ==>

x1 = -3; x2=1

Sobald das ganze als quard. Funktion vorliegt ist es kein Thema, aber wie ziehe das X aus der Potenz und löse das ganze Gebilde so auf, dass es dann wie in Schritt 2 dargestellt wird?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Gleichungen nach X auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:51 Do 24.07.2008
Autor: MatheSckell

Hallo Tom,

diese Aufgabe kannst du ganz leicht lösen, indem du Potenz und Logarithmus Gesetze anwendest.

Also:

[mm] (\bruch{1}{2})^{x}*(\bruch{1}{2})^{2x}=\bruch{1}{8} [/mm]

Jetzt kannst du auf der linken Seite folgendes anwenden:

Potenzen mit gleicher Basis werden Multipliziert indem man die Basis beibehält und die Exponenten addiert.

[mm] (\bruch{1}{2})^{3x}=\bruch{1}{8} [/mm]

Nun kannst du logaritmieren:

[mm] 3x*log(\bruch{1}{2})=log(\bruch{1}{8}) [/mm]

[mm] x=\bruch{\bruch{log(\bruch{1}{2})}{log(\bruch{1}{8})}}{3} [/mm]

x = 1

Viele Grüsse
MatheSckell

Bezug
                
Bezug
Gleichungen nach X auflösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:14 Do 24.07.2008
Autor: tom1985

Hallo MatheSckell,

erstmal danke für deine Hilfe, gibt es aber dennoch vielleicht einen Weg das ohne Log. zu lösen, so wie es in der Lösung von mir angegeben ist?

Also wie komme ich genau zu dem [mm] x^2+2x=3 [/mm] ?

Bezug
                        
Bezug
Gleichungen nach X auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:27 Do 24.07.2008
Autor: angela.h.b.


> Hallo MatheSckell,
>  
> erstmal danke für deine Hilfe, gibt es aber dennoch
> vielleicht einen Weg das ohne Log. zu lösen,

Hallo,

ja, einen Weg, in dem der Logarithmus nicht ausdrücklich vorkeommt.

> so wie es in
> der Lösung von mir angegeben ist?
>  
> Also wie komme ich genau zu dem [mm]x^2+2x=3[/mm] ?

Gar nicht.

Du hast die Aufgabe $ [mm] ((\bruch{1}{2})^x\cdot{}(\bruch{1}{2})^2)^x [/mm] $ = $ [mm] (\bruch{1}{2})^3 [/mm] $ zu lösen.

Unter Beachtung  der Potenzgesetze ergibt sich  [mm] (\bruch{1}{2})^3= ((\bruch{1}{2})^x\cdot{}(\bruch{1}{2})^{2*x}=(\bruch{1}{2})^{x+2*x}=(\bruch{1}{2})^{3x}. [/mm]

Dies gilt, wenn 3=3x, also x=1 ist.


Doch kurz zu

> so wie es in
> der Lösung von mir angegeben ist?
>  
> Also wie komme ich genau zu dem [mm]x^2+2x=3[/mm] ?

Das wäre die Lösung einer anderen Aufgabe, nämlich  [mm] ((\bruch{1}{2})^{x²}\cdot{}(\bruch{1}{2})^2)^x [/mm] $ = $ [mm] (\bruch{1}{2})^3 [/mm] .

Gruß v. Angela

Bezug
                                
Bezug
Gleichungen nach X auflösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:35 Do 24.07.2008
Autor: tom1985

Achso okay, also hat die Aufgabe einen Druckfehler gehabt :(
Vielen Dank für eure Hilfe.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]