Grad von Körpererweiterungen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Aufgabe | 1. Bestimmen Sie den Grad der Körpererweiterungen [mm] \IQ(\sqrt{2},\sqrt{3}) [/mm] und [mm] \IQ(i,\wurzel[3]{2}) [/mm] über [mm] \IQ
[/mm]
2. Zeigen Sie [mm] \IQ(\sqrt{2},\sqrt{3})=\IQ(\sqrt{2}+\sqrt{3}) [/mm] und [mm] \IQ(i,\wurzel[3]{2})=\IQ(i\wurzel[3]{2}) [/mm] |
Hallo zusammen, vielleicht könnt ihr mir bei obiger Aufgabe weiterhelfen.
Für [mm] \IQ(\sqrt{2},\sqrt{3}) [/mm] habe ich mir folgendes überlegt:
Ich betrachte den von [mm] \sqrt{2} [/mm] und [mm] \sqrt{3} [/mm] erzeugten Unterkörper [mm] \IQ[\sqrt{2},\sqrt{3}] [/mm] von [mm] \IC. [/mm] Die Elemente 1, [mm] \sqrt{2}, \sqrt{3}, \sqrt{6} [/mm] bilden ein [mm] \IQ-Erzeugendensystem [/mm] und sogar eine Basis, da man anderenfalls [mm] \sqrt{3} [/mm] als rationale Linearkombination von 1 und [mm] \sqrt{2} [/mm] darstellen könnte. Somit hat die Körpererweiterung den Grad 4.
Um zu zeigen, dass [mm] \IQ(\sqrt{2},\sqrt{3})=\IQ(\sqrt{2}+\sqrt{3}) [/mm] habe ich mir gedacht, dass es reichen könnte wenn ich sage, dass ich [mm] \sqrt{6} [/mm] durch [mm] \sqrt{2}*\sqrt{3} [/mm] und [mm] \sqrt{3} [/mm] durch [mm] \bruch{\sqrt{6}}{\sqrt{2}} [/mm] erzeugen kann. Denn es ist ja ein Körper der unter + und * abgeschlossen ist. Und [mm] \IQ(\sqrt{2},\sqrt{3})=\IQ(\sqrt{2}+\sqrt{3}) [/mm] gilt, wenn die erzeugenden Elemente ds einen Körpers auch im anderen liegen, was hier der Fall ist.
Kann ich das so machen?
Und wie muss ich da bei [mm] \IQ(i,\sqrt[3]{2}) [/mm] vorgehen, da fehlt mir die Idee und es wäre lieb, wenn ihr mir da helfen könntet. DANKE
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:22 Di 10.01.2017 | Autor: | hippias |
> 1. Bestimmen Sie den Grad der Körpererweiterungen
> [mm]\IQ(\sqrt{2},\sqrt{3})[/mm] und [mm]\IQ(i,\wurzel[3]{2})[/mm] über [mm]\IQ[/mm]
>
> 2. Zeigen Sie [mm]\IQ(\sqrt{2},\sqrt{3})=\IQ(\sqrt{2}+\sqrt{3})[/mm]
> und [mm]\IQ(i,\wurzel[3]{2})=\IQ(i\wurzel[3]{2})[/mm]
> Hallo zusammen, vielleicht könnt ihr mir bei obiger
> Aufgabe weiterhelfen.
>
> Für [mm]\IQ(\sqrt{2},\sqrt{3})[/mm] habe ich mir folgendes
> überlegt:
> Ich betrachte den von [mm]\sqrt{2}[/mm] und [mm]\sqrt{3}[/mm] erzeugten
> Unterkörper [mm]\IQ[\sqrt{2},\sqrt{3}][/mm] von [mm]\IC.[/mm] Die Elemente
> 1, [mm]\sqrt{2}, \sqrt{3}, \sqrt{6}[/mm] bilden ein
> [mm]\IQ-Erzeugendensystem[/mm] und sogar eine Basis, da man
> anderenfalls [mm]\sqrt{3}[/mm] als rationale Linearkombination von 1
> und [mm]\sqrt{2}[/mm] darstellen könnte. Somit hat die
> Körpererweiterung den Grad 4.
Das stimmt zwar alles, aber überzeugt mich nicht: denn es fehlt mir eine Begründung für die lineare Unabhängigkeit und eine Begründung, weshalb sich jedes Element aus [mm] $\IQ[\sqrt{2},\sqrt{3}]$ [/mm] als [mm] $\IQ$-Linearkombination [/mm] von $1, [mm] \sqrt{2},\sqrt{3},\sqrt{6}$ [/mm] darstellen lässt.
Man könnte so vorgehen: Definiere $F$ als den von $1, [mm] \sqrt{2},\sqrt{3},\sqrt{6}$ [/mm] erzeugten [mm] $\IQ$-Vektorraum.
[/mm]
1. Leicht macht man sich klar, dass [mm] $F\subseteq \IQ[\sqrt{2},\sqrt{3}]$ [/mm] ist.
2. Zeige, dass $F$ sogar ein Körper ist.
3. Weil [mm] $\IQ[\sqrt{2},\sqrt{3}]$ [/mm] der kleinste Körper ist, der [mm] $\sqrt{2}$ [/mm] und [mm] $\sqrt{3}$ [/mm] enthält, folgt dann auch [mm] $\IQ[\sqrt{2},\sqrt{3}]\subseteq [/mm] F$ und somit $F= [mm] \IQ[\sqrt{2},\sqrt{3}]$.
[/mm]
4. Zeige, dass $1, [mm] \sqrt{2},\sqrt{3},\sqrt{6}$ $\IQ$-linear [/mm] unabhängig sind.
Statt einer Basis zu konstruieren, könntest Du auch mit Hilfe von Graden von Minimalpolynomen den Grad der Körpererweiterung bestimmen; das dürfte mit weniger Rechnungen verbunden sein.
>
> Um zu zeigen, dass
> [mm]\IQ(\sqrt{2},\sqrt{3})=\IQ(\sqrt{2}+\sqrt{3})[/mm] habe ich mir
> gedacht, dass es reichen könnte wenn ich sage, dass ich
> [mm]\sqrt{6}[/mm] durch [mm]\sqrt{2}*\sqrt{3}[/mm] und [mm]\sqrt{3}[/mm] durch
> [mm]\bruch{\sqrt{6}}{\sqrt{2}}[/mm] erzeugen kann. Denn es ist ja
> ein Körper der unter + und * abgeschlossen ist. Und
> [mm]\IQ(\sqrt{2},\sqrt{3})=\IQ(\sqrt{2}+\sqrt{3})[/mm] gilt, wenn
> die erzeugenden Elemente ds einen Körpers auch im anderen
> liegen, was hier der Fall ist.
>
> Kann ich das so machen?
Nein. Du müsstest schon zeigen, dass [mm] $\sqrt{2},\sqrt{3},\sqrt{6}$ [/mm] sich Potenzen etc. von [mm] $\sqrt{2}+\sqrt{3}$ [/mm] darstellen lassen.
Dieser Ansatz geht (z.B. [mm] $(\sqrt{2}+\sqrt{3})^{2}=\ldots$), [/mm] aber es genügt zu zeigen, dass $4$ der Grad des Minimalpolynoms von [mm] $\sqrt{2}+\sqrt{3}$ [/mm] ist...
>
> Und wie muss ich da bei [mm]\IQ(i,\sqrt[3]{2})[/mm] vorgehen, da
> fehlt mir die Idee und es wäre lieb, wenn ihr mir da
> helfen könntet. DANKE
|
|
|
|