www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Gradient & Tangentialebene
Gradient & Tangentialebene < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gradient & Tangentialebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:28 Fr 18.09.2009
Autor: maschbaustud

Aufgabe
Durch die Gleichung [mm] f(x)=x^3-2y^2-2z^3+2xy+3xz-2=0[/mm] ist eine Fläche im Raum gegeben. Berechnen Sie im Punkt P=(1,1,1)
a) den Gradienten in (x,y)-Richtung
b) die Gleichung der Tangentialebene an diese Fläche

Ich bin mir bei dieser Aufgabe nicht so ganz sicher, ob mein Lösungsansatz richtig ist.

a) ich habe die erste Ableitung nach x und die erste Ableitung nach y gebildet. Dann sähe mein Gradient so aus: [mm] grad=\pmat{ 3x^2+2y+3z \\ -4y+2x } [/mm] und für den Punkt P [mm] grad_P=\pmat{ 8 \\ -2 } [/mm]

b) hier bin ich mir jetzt nicht so ganz sicher was der richtige Weg ist. In meiner Formelsammlung habe ich diesen Hinweis gefunden: "Bei einem ebenen Feld verschwindet die dritte Komponente" (Papula) heißt das ich muss nur mit dem x,y-Gradienten die Tangentialebene bestimmen? Das sähe ja dann so aus: [mm] grad_P * (r-r_P)=\pmat{ 8 \\ -2 }*(r-r_P)=\pmat{ 8 \\ -2 }* \pmat{ x-1 \\ y-1 }= 8x-5-2y[/mm]
oder muss ich doch mit dem dreidimensionalen Gradienten rechnen?
[mm] grad=\pmat{ 3x^2+2y+3z \\ -4y+2x \\ -6z^2+3x } grad_p*(r-r_p)=\pmat{ 8 \\ -2 \\ -3 } \pmat{ x-1 \\ y-1 \\z-1 }=8x-2y-3z+4[/mm]

        
Bezug
Gradient & Tangentialebene: Dreidimensional
Status: (Antwort) fertig Status 
Datum: 13:01 Sa 19.09.2009
Autor: Infinit

Hallo,
der Gradient ist ja gerade der Normalenvektor auf die Fläche und insofern ist die Rechnung mit dem vollständigen Gradienten okay. Das Skalarprodukt zwischen dem Normalenvektor und jedem beliebiegn Vektor in Ebene ist Null und insofern sollte es komplett heißen:
$$ 8x - 2y -3z +4 = 0 $$
Viele Grüße,
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]