Gradient berechnen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | $$
[mm] \begin{array}{l}{\text { Es seien die Funktionen }} \\ {\vec{f} : \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \quad \left( \begin{array}{c}{x} \\ {y} \\ {z}\end{array}\right) \mapsto \left( \begin{array}{c}{x^{2}-y} \\ {y} \\ {z^{2}}\end{array}\right) \quad \text { und } \quad \vec{g} : \mathbb{R}^{2} \times ] 0, \infty\left[\rightarrow \mathbb{R}^{3}, \quad \left( \begin{array}{c}{x} \\ {y} \\ {z}\end{array}\right) \mapsto \left( \begin{array}{c}{y} \\ {y-x^{2}} \\ {z^{\sin (x y)}}\end{array}\right)\right.}\end{array}
[/mm]
$$
$$
h : [mm] \mathbb{R}^{2} \times [/mm] ] 0, [mm] \infty[\rightarrow \mathbb{R} \operatorname{durch} [/mm] h(x, y, [mm] z)=\langle\vec{f}(x, [/mm] y, z), [mm] \vec{g}(x, [/mm] y, [mm] z)\rangle \text [/mm] { gegeben } [mm] \\ \text [/mm] { Wobei hier das Standardskalarprodukt gemeint ist }
$$
$$
[mm] \begin{array}{l}{\text { (a) Berechnen Sie grad }_{\vec{x}} h \text { einmal mit und einmal ohne Anwendung der Produktregel. }} \\ {\text { (b) In welche Richtung wächst } h \text { am stärksten vom Punkt }\left(\frac{\pi}{2}, 1,1\right)^{T} \text { aus? }}\end{array}
[/mm]
$$ |
Guten Morgen, ich stecke gerade irgendwie etwas fest und zwar macht mir die Aufgabe a) Probleme.
Ich schreibe h nun ersteinmal um zu :
$h(x,y,z) = [mm] \langle(\left( \begin{array}{c}{x^{2}-y} \\ {y} \\ {z^{2}}\end{array}\right),\left( \begin{array}{c}{y} \\ {y-x^{2}} \\ {z^{\sin (x y)}}\end{array}\right) )\rangle [/mm] = [mm] x^2y-y^2+y^2-x^2y [/mm] + [mm] z^2{z}^{sin(xy)} [/mm] = [mm] z^2{z}^{sin(xy)}$
[/mm]
Nun soll ich ja den Gradienten von [mm] $z^2{z}^{sin(xy)}$ [/mm] einmal mit und einmal ohne Produktregel bestimmen und nun wird es unschön, denn bei uns im Skript finde ist nur diese Formel hier [mm] $\operatorname{grad}_{\vec{x}}(f g)=g(\vec{x}) \operatorname{grad}_{\vec{x}} f+f(\vec{x}) \operatorname{grad}_{\vec{x}} [/mm] g$ wobei ich nicht weiß ob [mm] $\vek{x} [/mm] $ für alle Variablen steht, oder nur für $x$, deshalb tue ich es nun einmal für x und hoffe ihr verbessert mich gleich :)
[mm] $\operatorname{grad}_{\vec{x}}(z^2{z}^{sin(xy)}) [/mm] = [mm] 2z{z}^{sin(xy} [/mm] + [mm] z^2sin(x,y){z}^{sin(xy)-1}$
[/mm]
(Schaut irgendwie falsch aus)
Nun mit der Produktregel:
Dafür forme ich erstmal um [mm] $z^2{z}^{sin(xy)} [/mm] = [mm] {z}^{sin(xy)+2}$
[/mm]
Damit folgt:
$f'(x,y,z)= [mm] {z}^{ycos(xy)+2} [/mm] \ \ \ \ [mm] {z}^{xcos(xy)+2} [/mm] \ \ \ \ [mm] (sin(xy)+2){z}^{sin(xy)+1} [/mm] = [mm] \vektor{{z}^{ycos(xy)+2} \\ {z}^{xcos(xy)+2} \\(sin(xy)+2){z}^{sin(xy)+1}}= \operatorname{grad}_{\vec{x}}$ [/mm]
Ein weiteres Problem ist die Form, leider habe ich keine Ahnung, wie ich es korrekt aufschreiben soll, aber das merkt ihr ja schon.
Ich hoffe ihr könnt mir etwas helfen.
Liebe Grüße
Jule
Edit: Hier noch einmal der Gradient mit Produktregel so wie mein Bauchgefühl es mir sagen würde, obwohl die Form wahrscheinlich falsch ist:
[mm] $\operatorname{grad}_{\vec{x}}(z^2{z}^{sin(xy)} [/mm] = [mm] \vektor{ 0\cdot {z}^{sin(xy)} + z^2{z}^{ycos(xy)}\\ 0\cdot {z}^{sin(xy)} + z^2{z}^{xcos(xy)}\\ 2z \cdot {z}^{sin(xy)} + sin(xy)z^2{z}^{sin(xy)} } [/mm] = [mm] \vektor{{z}^{ycos(xy)+2} \\ {z}^{xcos(xy)+2} \\(sin(xy)+2){z}^{sin(xy)+1}} [/mm] $
|
|
|
|
> [mm][/mm]
> [mm]\begin{array}{l}{\text { Es seien die Funktionen }} \\ {\vec{f} : \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \quad \left( \begin{array}{c}{x} \\ {y} \\ {z}\end{array}\right) \mapsto \left( \begin{array}{c}{x^{2}-y} \\ {y} \\ {z^{2}}\end{array}\right) \quad \text { und } \quad \vec{g} : \mathbb{R}^{2} \times ] 0, \infty\left[\rightarrow \mathbb{R}^{3}, \quad \left( \begin{array}{c}{x} \\ {y} \\ {z}\end{array}\right) \mapsto \left( \begin{array}{c}{y} \\ {y-x^{2}} \\ {z^{\sin (x y)}}\end{array}\right)\right.}\end{array}[/mm]
> [mm][/mm]
> [mm][/mm]
>
> h : [mm]\mathbb{R}^{2} \times[/mm] ] 0, [mm]\infty[\rightarrow \mathbb{R} \operatorname{durch}[/mm]
> h(x, y, [mm]z)=\langle\vec{f}(x,[/mm] y, z), [mm]\vec{g}(x,[/mm] y, [mm]z)\rangle \text[/mm]
> { gegeben } [mm]\\ \text[/mm] { Wobei hier das Standardskalarprodukt
> gemeint ist }
> [mm][/mm]
>
> [mm][/mm]
> [mm]\begin{array}{l}{\text { (a) Berechnen Sie grad }_{\vec{x}} h \text { einmal mit und einmal ohne Anwendung der Produktregel. }} \\ {\text { (b) In welche Richtung wächst } h \text { am stärksten vom Punkt }\left(\frac{\pi}{2}, 1,1\right)^{T} \text { aus? }}\end{array}[/mm]
> [mm][/mm]
>
>
> Guten Morgen, ich stecke gerade irgendwie etwas fest und
> zwar macht mir die Aufgabe a) Probleme.
>
> Ich schreibe h nun ersteinmal um zu :
>
> [mm]h(x,y,z) = \langle(\left( \begin{array}{c}{x^{2}-y} \\ {y} \\ {z^{2}}\end{array}\right),\left( \begin{array}{c}{y} \\ {y-x^{2}} \\ {z^{\sin (x y)}}\end{array}\right) )\rangle = x^2y-y^2+y^2-x^2y + z^2{z}^{sin(xy)} = z^2{z}^{sin(xy)}[/mm]
>
> Nun soll ich ja den Gradienten von [mm]z^2{z}^{sin(xy)}[/mm] einmal
> mit und einmal ohne Produktregel bestimmen und nun wird es
> unschön, denn bei uns im Skript finde ist nur diese Formel
> hier [mm]\operatorname{grad}_{\vec{x}}(f g)=g(\vec{x}) \operatorname{grad}_{\vec{x}} f+f(\vec{x}) \operatorname{grad}_{\vec{x}} g[/mm]
> wobei ich nicht weiß ob [mm]\vek{x}[/mm] für alle Variablen
> steht, oder nur für [mm]x[/mm], deshalb tue ich es nun einmal für
> x und hoffe ihr verbessert mich gleich :)
>
> [mm]\operatorname{grad}_{\vec{x}}(z^2{z}^{sin(xy)}) = 2z{z}^{sin(xy} + z^2sin(x,y){z}^{sin(xy)-1}[/mm]
>
> (Schaut irgendwie falsch aus)
So ist es.
Die Ableitung von [mm] z^2*z^{sin(xy)} [/mm] wird so gebildet:
[mm] z^2 [/mm] bleibt als konstanter Faktor.
[mm] z^x [/mm] nach x abgeleitet gibt [mm] ln(z)*z^x.
[/mm]
Statt x haben wir aber die innere Funktion sin(xy). Und statt sin(x) haben wir für x nochmals die innere Funktion xy.
Somit erhalten wir: [mm] ln(z)*z^{sin(xy)} [/mm] (= äußere Ableitung)*cos(xy)(=Ableitung von sin)*y(=innere Ableitung von xy), also insgesamt
[mm] z^2*ln(z)*z^{sin(xy)}*cos(xy)*y
[/mm]
Entsprechend die zweite Komponente des Gradienten
[mm] z^2*ln(z)*z^{sin(xy)}*cos(xy)*x
[/mm]
Die z-Komponente hast du dann richtig berechnet.
>
> Nun mit der Produktregel:
>
> Dafür forme ich erstmal um [mm]z^2{z}^{sin(xy)} = {z}^{sin(xy)+2}[/mm]
>
> Damit folgt:
>
> [mm]f'(x,y,z)= {z}^{ycos(xy)+2} \ \ \ \ {z}^{xcos(xy)+2} \ \ \ \ (sin(xy)+2){z}^{sin(xy)+1} = \vektor{{z}^{ycos(xy)+2} \\ {z}^{xcos(xy)+2} \\(sin(xy)+2){z}^{sin(xy)+1}}= \operatorname{grad}_{\vec{x}}[/mm]
>
>
> Ein weiteres Problem ist die Form, leider habe ich keine
> Ahnung, wie ich es korrekt aufschreiben soll, aber das
> merkt ihr ja schon.
>
> Ich hoffe ihr könnt mir etwas helfen.
>
> Liebe Grüße
> Jule
>
>
>
> Edit: Hier noch einmal der Gradient mit Produktregel so wie
> mein Bauchgefühl es mir sagen würde, obwohl die Form
> wahrscheinlich falsch ist:
>
> [mm]\operatorname{grad}_{\vec{x}}(z^2{z}^{sin(xy)} = \vektor{ 0\cdot {z}^{sin(xy)} + z^2{z}^{ycos(xy)}\\ 0\cdot {z}^{sin(xy)} + z^2{z}^{xcos(xy)}\\ 2z \cdot {z}^{sin(xy)} + sin(xy)z^2{z}^{sin(xy)} } = \vektor{{z}^{ycos(xy)+2} \\ {z}^{xcos(xy)+2} \\(sin(xy)+2){z}^{sin(xy)+1}}[/mm]
>
>
Hier leitest du zuerst alle Komponenten in f nach x ab und skalar-multipliziertst diesen Vektor mit g, leitest dann g komponentenweise nach x ab und skalarmultiplizierst das mit f, das Ganze gibt dann die x-Komponente des Gradienten:
[mm] \vektor{2x \\ 0\\0}*\vektor{y \\ y-x^2\\z^{sin(xy)}}+\vektor{x^2-y \\ y\\z^2}\vektor{0 \\ -2x\\ln(z)*z^{sin(xy)}*cos(xy)*y}=2xy [/mm] - 2xy + [mm] z^2*ln(z)*z^{sin(xy)}*cos(xy)*y= z^2*ln(z)*z^{sin(xy)}*cos(xy)*y
[/mm]
Jetzt alles noch mal nach y statt nach x und dann alles noch mal nach z statt nach x ableiten, und du bekommst die drei Komponenten des Gradienten.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:34 Fr 10.05.2019 | Autor: | Juliane03 |
Dankeschön
|
|
|
|