Grenzwert berechnen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:11 Sa 16.04.2011 | Autor: | myro |
Aufgabe | Bestimme den Grenzwert n*(n^(1/n)-1) /ln(n) für n gegen unendlich! |
Hallo,
mir fehlt eine Anfangsidee wie ich diesen Grenzwert bestimmen könnte. Ich weiß, dass n^(1/n) gegen 1 geht. Ich hab es auch mit l'Hospital versucht, allerdings vereinfacht sich hier beim Ableiten auch nichts und ich komme immer wieder auf das Ausgangsproblem zurück. Ich hab auch versucht den Zähler mit e^ln(Zähler) auf eine bessere Form zu bringen, da stört aber das -1 relativ gewaltig. Ich hab auch probiert durch die höchste Potenz zu teilen, dass machte den Ausdruck auch nicht sinnvoller.
Ich weiß (dank Mathematica), dass der Grenzwert der Funktion 1 ist, allerdings fehlt mir jegliche Anfangsidee.
Ich hab auch probiert n^(1/n)-1 irgendwie als Produkt zu schreiben, bin aber kläglich gescheitert.
Für eine Idee wäre ich sehr dankbar.
|
|
|
|
Hallo myro,
> Bestimme den Grenzwert n*(n^(1/n)-1) /ln(n) für n gegen
> unendlich!
>
> Hallo,
> mir fehlt eine Anfangsidee wie ich diesen Grenzwert
> bestimmen könnte. Ich weiß, dass n^(1/n) gegen 1 geht.
> Ich hab es auch mit l'Hospital versucht,
Na, das kannst du doch so ohne weiteres nicht anwenden, bei direktem Grenzübergang bekommst du doch [mm]\frac{\infty\cdot{}0}{\infty}[/mm]
Das ist hochgradig unbestimmt, wieso sollte es [mm]\frac{\infty}{\infty}[/mm] sein?
Wenn du es etwas umschreibst in [mm]\frac{n(\sqrt[n]{n}-1)}{\ln(n)}=\frac{\sqrt[n]{n}-1}{\frac{\ln(n)}{n}}[/mm], dann kannst du dir schnell mit de l'Hôpital überlegen, dass nur der Nenner, also [mm]\frac{\ln(n)}{n}[/mm] für [mm]n\to\infty[/mm] gegen 0 geht.
Der gesamte Bruch geht also gegen den unbestimmten Ausdruck [mm]\frac{0}{0}[/mm]
Damit kannst du dann mal mit de l'Hôpital draufhauen. Es ergibt sich (wenn ich das auf die Schnelle richtig sehe) ein dir wohlbekannter Ausdruck, von dem du weißt, was er für [mm]n\to\infty[/mm] treibt!
Für die Ableitung von [mm]\sqrt[n]{n}-1[/mm] empfiehlt sich die Umschreibung in [mm]e^{\frac{1}{n}\ln(n)}-1[/mm]
> allerdings
> vereinfacht sich hier beim Ableiten auch nichts und ich
> komme immer wieder auf das Ausgangsproblem zurück. Ich hab
> auch versucht den Zähler mit e^ln(Zähler) auf eine
> bessere Form zu bringen, da stört aber das -1 relativ
> gewaltig. Ich hab auch probiert durch die höchste Potenz
> zu teilen, dass machte den Ausdruck auch nicht sinnvoller.
> Ich weiß (dank Mathematica), dass der Grenzwert der
> Funktion 1 ist, allerdings fehlt mir jegliche Anfangsidee.
> Ich hab auch probiert n^(1/n)-1 irgendwie als Produkt zu
> schreiben, bin aber kläglich gescheitert.
> Für eine Idee wäre ich sehr dankbar.G
Gruß
schachuzipus
>
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:49 Sa 16.04.2011 | Autor: | myro |
Ich hatte es schon so wie bei Ihnen beschrieben umgestellt, allerdings kam mir da nichts bekannt vor. Eventuell hab ich mich einfach verrechnet und probier es einfach noch einmal, vielen Dank.
|
|
|
|