www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Grenzwert im Integralzeichen
Grenzwert im Integralzeichen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert im Integralzeichen: Schwere Frage
Status: (Frage) beantwortet Status 
Datum: 02:21 Mo 24.08.2020
Autor: Psychopath

Das Integral ist so nicht lösbar:
[mm] \integral_{-\infty}^{\infty}{ \limes_{n\rightarrow\infty}[e^{\bruch{1}{n}*|t|}]*e^{-j*\omega*t} dt } [/mm]

Das Integral wäre aber lösbar, wenn ich den Grenzwertübergang (limes) vor das Integral schreiben dürfte:
[mm] \limes_{n\rightarrow\infty}\integral_{-\infty}^{\infty}{ e^{\bruch{1}{n}*|t|}*e^{-j*\omega*t} dt } [/mm]

Die Frage ist: Darf ich das (oder darf ich es nicht), und warum darf ich das (oder nicht)?

Ich habe auch schon nachgedacht: Ich habe zuerst an den Satz über die "monotone Konvergenz einer Funktionenfolge" gedacht, der es erlaubt, das Limeszeichen vor das Integral zu schreiben. Aber da spricht folgendes dagegen:

1. Das Limes Zeichen gehört nur zum ersten Faktor. Darf ich es trotzdem rausziehen?
2. Falls nein, könnte man den zweiten (komplexen) Faktor in den Limes einschließen und dann das Limes rausziehen.
    Aber gilt der Satz auch für komplexe Folgen?

Also, wie würdet ihr vorgehen, um das Limes Zeichen vor das Integral zu bekommen?

Vielen Dank im voraus


        
Bezug
Grenzwert im Integralzeichen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:57 Mo 24.08.2020
Autor: Gonozal_IX

Hiho,

die Antworten solltest du dir selbst geben können…
> Das Integral ist so nicht lösbar:

>  [mm]\integral_{-\infty}^{\infty}{ \limes_{n\rightarrow\infty}[e^{\bruch{1}{n}*|t|}]*e^{-j*\omega*t} dt }[/mm]

Wenn du damit meinst, das Integral konvergiert nicht, dann ist das korrekt.
Lösbar ist es dennoch, es gilt nämlich schlichtweg:
[mm]\integral_{-\infty}^{\infty}{ \limes_{n\rightarrow\infty}[e^{\bruch{1}{n}*|t|}]*e^{-j*\omega*t} dt } = \integral_{-\infty}^{\infty}{1*e^{-j*\omega*t} dt }[/mm] und dieses Integral konvergiert nicht.

> Das Integral wäre aber lösbar, wenn ich den Grenzwertübergang (limes) vor das Integral schreiben dürfte:
> Die Frage ist: Darf ich das (oder darf ich es nicht), und
> warum darf ich das (oder nicht)?

Was sagt dir das, wenn du nach diesem Umformungsschritt ein konvergierendes Integral erhältst, obwohl es vorher nicht konvergierte?

> 2. Falls nein, könnte man den zweiten (komplexen) Faktor
> in den Limes einschließen und dann das Limes rausziehen.
> Aber gilt der Satz auch für komplexe Folgen?

Ja, die Grenzwertsätze gelten auch für komplexe Folgen.
Allerdings enthältst du dann keine Funktionenfolge, für den du den Satz der monotonen Konvergenz anwenden könntest.
Warum nicht?

> Also, wie würdet ihr vorgehen, um das Limes Zeichen vor das Integral zu bekommen?

Gar nicht, da es nicht geht.

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]