www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Grenzwerte bei Funktionen
Grenzwerte bei Funktionen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwerte bei Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:17 Mo 07.01.2008
Autor: miss_kiss

Aufgabe
Sei f: IR->IR.
(i) Zeigen Sie, dass aus der Existens von lim x->a f(x) die Existenz von lim h->0 f(a+h) folgt und umgekehrt, sowie
                                lim x->a f(x) = lim h->0 f(a+h)

Kann mir bitte jemand einen Ansatz geben, wie ich diese Aufgabe lösen kann.

Danke.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Grenzwerte bei Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:19 Mo 07.01.2008
Autor: Kalita

Hast du schon eine Idee?

Also wenn x gegen a geht ist das f(a) und wenn auf der anderen Seite h gegen 0 geht steht da auch f(a)...

Hmmm, ich habe es mir bildlich aufgemalt damals. Vll hilft dir das weiter. Ich weiß ja nicht wo du in deiner Überlegung stecken geblieben ist. Gib mal bitte mehr Anhaltspunkte :) Dann kann man auch präziser werden. Bis dann

Bezug
                
Bezug
Grenzwerte bei Funktionen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:43 Mo 07.01.2008
Autor: miss_kiss

Hast du schon eine Idee?
Meien Anhaltspunkt war nur diese Gleichung:
     lim x->a f(x)- f(a)/x-a = lim h->0 f(a+h)-f(a)/(a+h)-a
Hier sieht man ja, dass f(x) durch f(a+h) ersetzt wird.
Aber ich weiß nicht, wie ich das zeigen soll.

Es ist mir auch klar, dass lim x->a f(x)=f(a) und lim h->0 f(a+h)=f(a) ist.
Aber reicht das schon aus für die Aufgabe?

Bezug
                        
Bezug
Grenzwerte bei Funktionen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:13 Mi 09.01.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]