www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Grenzwerte von Folgen
Grenzwerte von Folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwerte von Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:24 So 18.11.2012
Autor: Nyme

Aufgabe
Geben Sie jeweils ein Beispiel für reelle Folgen [mm](a_n)[/mm] und [mm](b_n)[/mm] mit [mm]\limes_{n \to \infty}a_n = \infty[/mm] und [mm]\limes_{n \to \infty}b_n = 0[/mm], sodass

[mm]\limes_{n \to \infty}a_n * b_n = c_0[/mm], wobei [mm] c_0 [/mm] eine vorgegebene reelle Zahl ist.

Mein bisheriger Ansatz war, auszunutzen, dass sich zum Beispiel [mm](a_n) = n^2[/mm] und [mm](b_n) = n^-2[/mm] gegenseitig eliminieren, wenn man sie multipliziert und dann zu versuchen, [mm]c_0[/mm] irgendwie da einzubauen. Bisher hab ich da allerdings keinen viel versprechenden Lösungsansatz gefunden, deswegen bin ich für jeden Tipp dankbar!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Grenzwerte von Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:41 So 18.11.2012
Autor: notinX

Hallo,

> Geben Sie jeweils ein Beispiel für reelle Folgen [mm](a_n)[/mm] und
> [mm](b_n)[/mm] mit [mm]\limes_{n \to \infty}a_n = \infty[/mm] und [mm]\limes_{n \to \infty}b_n = 0[/mm],
> sodass
>  
> [mm]\limes_{n \to \infty}a_n * b_n = c_0[/mm], wobei [mm]c_0[/mm] eine
> vorgegebene reelle Zahl ist.
>  Mein bisheriger Ansatz war, auszunutzen, dass sich zum
> Beispiel [mm](a_n) = n^2[/mm] und [mm](b_n) = n^-2[/mm] gegenseitig
> eliminieren, wenn man sie multipliziert und dann zu
> versuchen, [mm]c_0[/mm] irgendwie da einzubauen. Bisher hab ich da
> allerdings keinen viel versprechenden Lösungsansatz
> gefunden, deswegen bin ich für jeden Tipp dankbar!

versuchs mal mit [mm] $c_0=a_n\cdot b_n=n^2\cdot n^{-2}$ [/mm]

>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß,

notinX

Bezug
                
Bezug
Grenzwerte von Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:52 So 18.11.2012
Autor: Nyme


> versuchs mal mit [mm]c_0=a_n\cdot b_n=n^2\cdot n^{-2}[/mm]
>  
>
> Gruß,
>  
> notinX


Aber [mm]c_0[/mm] ist doch vorgegeben, kann also auch ungleich 0 sein.
[mm](a_n) = n^2 , (b_n) = n^-2[/mm] war ja nur ein Ansatz von mir, der mich nicht weitergebracht hat. Also kann ich doch nicht einfach [mm]c_0 = n^2 * n-2 = 0 [/mm] setzen, dann ist mein Beispiel ja nur noch für ein einziges [mm]c_0[/mm] gültig. Oder habe ich da was grundlegendes falsch verstanden?...


Bezug
                        
Bezug
Grenzwerte von Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 02:00 So 18.11.2012
Autor: reverend

Hallo Nyme, [willkommenmr]

> > versuchs mal mit [mm]c_0=a_n\cdot b_n=n^2\cdot n^{-2}[/mm]
>  >  
> >
> > Gruß,
>  >  
> > notinX
>
>
> Aber [mm]c_0[/mm] ist doch vorgegeben, kann also auch ungleich 0
> sein.

Na, das wäre es ja hier auch.

>  [mm](a_n) = n^2 , (b_n) = n^-2[/mm] war ja nur ein Ansatz von mir,
> der mich nicht weitergebracht hat. Also kann ich doch nicht
> einfach [mm]c_0 = n^2 * n-2 = 0[/mm]

Du meinst [mm] c_0=n^2*n^{-2}\blue{=1}, [/mm] nehme ich an.

> setzen, dann ist mein Beispiel
> ja nur noch für ein einziges [mm]c_0[/mm] gültig. Oder habe ich da
> was grundlegendes falsch verstanden?...

Fein, dann basteln wir mal das [mm] c_0 [/mm] mit hinein:

1) [mm] a_n=c_0*n^2, b_n=n^{-2} [/mm]
2) [mm] a_n=n^2, b_n=c_0*n^{-2} [/mm]
3) [mm] a_n=q*n^2, b_n=\tfrac{c_0}{q*n^2} [/mm] mit [mm] q\not=0 [/mm]

Grüße
reverend


Bezug
                                
Bezug
Grenzwerte von Folgen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:07 So 18.11.2012
Autor: Nyme

Ah, jetzt hats *klick* gemacht! :)

Danke an notinX und reverend für die Hilfe!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]