Gruppe < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Hallo Leute!
Hab morgen Aufgaben abzugeben, obwohl die nicht so schwer sind komm ich nicht weiter.
Für jede Hilfe und Ansatz wäre ich dankbar!
Die Aufgabe:
Seien G1; G2 Gruppen (mit multiplikativer Schreibweise.
Wir definieren eine Multiplikation auf G1 [mm] \times [/mm] G2 durch:
( [mm] x_{1},x_{2}).( y_{1}, y_{2})=( x_{1} y_{1}, x_{2} y_{2}) [/mm] für
( [mm] x_{1}, x_{2}),( y_{1}, y_{2}) \in [/mm] G1 [mm] \times [/mm] G2
Zeigen Sie dass G1 [mm] \times [/mm] G2 zusammen mit dieser Multiplikation eine Gruppe ist.
Mir ist jetzt klar dass es eine Gruppe sein wird,da die eigenschaften ererbt werden. Dazu muss ich aber trotzdem zeigen die drei eigenschaften von Gruppen (neutrale Element,assoziativität,kommutativität)
Reicht es aber anfangen mit [mm] (x_{1}y_{1}) [/mm] und [mm] (x_{2}y_{2}) [/mm] gehören zu dieser neue Gruppe G??
Nochmals vielen Dank für Hilfe!!
Mfg Martina
|
|
|
|
Hi Martina!
So ganz verstehe ich nicht wo dein Problem liegt.
Okay:
Assoziativität
[mm] (x_1,x_2)*((y_1,y_2)*(z_1,z_2))=(x_1,x_2)*(y_1z_1,y_2z_2)=(x_1y_1z_1,x_2y_2z_2)=(x_1y_1,x_2y_2)*(z_1,z_2)=((x_1,x_2)*(y_1,y_2))*(z_1,z_2), \forall (x_1,x_2),(y_1,y_2),(z_2,z_2)\in G_1\times G_2
[/mm]
für die kommutativität machst du's genauso, also einfach einsetzen und umformen.
neutrales element
[mm] e_i [/mm] neutrales element in [mm] G_i, [/mm] i=1,2
dann: [mm] (e_1,e_2)*(x_1,x_2)=(e_1x_1,e_2x_2)=(x_1,x_2), \forall (x_1,x_2)\in G_1\times G_2
[/mm]
also ist [mm] (e_1,e_2) [/mm] neutrales element in [mm] G_1\times G_2
[/mm]
Hoffe du kommst jetzt besser klar.
mfg Verena
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 00:29 Mi 17.11.2004 | Autor: | martina25 |
Vielen Dank für Deine Hilfe!!
Mein Problem ist dass ich total unsicher bin, wegen unseren Turorien (jede sagt was anderes). Dann lieber nachfragen.
LG Martina
|
|
|
|