www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Gruppe
Gruppe < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:55 Mo 26.10.2009
Autor: Piatty

Aufgabe
Sei [mm] (G,\circ) [/mm] eine Gruppe. Für alle Elemente [mm] a\in [/mm] G gelte a = [mm] a^{-1} [/mm] Zeigen Sie [mm] (G,\circ) [/mm] ist abelsch.

Hallo,
abelsch bedeutet ja 1. das assoziativ Gesetz muss gelten, 2.es muss ein linksneutrales Element geben (hier [mm] a^{-1}), [/mm] 3. das kommutativ Gesetz muss gelten und 4. das inverse Element verknüpft mit dem ursprünglichen Element gibt das linksneutrale Element.
Wie beweise ich denn jetzt, dass [mm] (G,\circ) [/mm] abelsch ist??? Ich bin total ratlos.

Vielen Dank schonmal für eure Hilfe.

LG Janika

        
Bezug
Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 19:51 Mo 26.10.2009
Autor: XPatrickX

Hallo,

da G bereits als Gruppe vorausgesetzt ist, brauchst du nur noch die Eigenschaft abelsch zu zeigen, d.h. es muss gelten $ab=ba$ für alle [mm] $a,b\in [/mm] G$.

Dazu:

[mm] ab=a^{-1}b^{-1}=(ba)^{-1}=ba [/mm]


Gruß Patrick

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]