Gruppen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei (G,*) eine Grupe ,a [mm] \in [/mm] G und "sternchen" : GxG---> G, (x,y) ---> x*a*y .Zeigen sie,dass (G,"sternchen ) eine Gruppe ist.
Meine Ansatz:"sternchen"=@ (damit keine missverständnisse)
assoziativität:((x,y) @ (x1,y1)) @ (x2,y2)=(x*a*y @ x*1*a*y1) @ (x2,y2)=(x*a*y @ x*1*a*y1 @ x2*a *y2)
stimmt das soweit?hab ich das richtig eingesetzt? |
Guten Abend,
Ich hoffe ihr könnt mir heut abend noch schnell schreiben ob mein Ansatz richtig ist.
Lg
eva marie
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 02:21 Mo 20.04.2009 | Autor: | felixf |
Hallo eva marie!
> Sei (G,*) eine Grupe ,a [mm]\in[/mm] G und "sternchen" : GxG---> G,
> (x,y) ---> x*a*y .Zeigen sie,dass (G,"sternchen ) eine
> Gruppe ist.
> Meine Ansatz:"sternchen"=@ (damit keine
> missverständnisse)
> assoziativität:((x,y) @ (x1,y1)) @ (x2,y2)=(x*a*y @
> x*1*a*y1) @ (x2,y2)=(x*a*y @ x*1*a*y1 @ x2*a *y2)
> stimmt das soweit?hab ich das richtig eingesetzt?
Nee, das stimmt so nicht. Die Gruppenelemente sind aus $G$, nicht aus $G [mm] \times [/mm] G$. Du stattest sozusagen $G$ mit einer anderen Gruppenoperation aus.
Fuer die Assoziativitaet nimmst du $x, y, z [mm] \in [/mm] G$ und berechnest $(x @ y) @ z = (x a y) @ z = (x a y) a z$.
LG Felix
PS: Kann es sein dass in der Aufgabenstellung etwas fehlt? Etwa dass $a$ im Zentrum von $G$ liegt (also [mm] $\forall [/mm] b [mm] \in [/mm] G : a b = b a$) oder dass $G$ abelsch ist?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:53 So 14.04.2013 | Autor: | fider |
Hallo, ich habe eine ähnliche, wenn nicht sogar die gleiche Aufgabe und eine Lösung dazu, bin mir nur nicht sicher, ob die so richtig ist.
Sei [mm](G,\cdot)[/mm] eine Gruppe, [mm]a \in G[/mm] und [mm]\* : G \times G \to G, (x,y) \mapsto x \cdot a \cdot y[/mm]. Zeigen Sie, dass [mm](G,\*)[/mm] eine Gruppe ist.
Meine Lösung dazu sieht folgendermaßen aus:
Assoziativität:
Seien [mm]x,y,z \in G[/mm] so gilt [mm]x \* (y \* z) = (x \* y) \* z[/mm].
Z.z.:
[mm]x \* (y \* z) = x \* (y \cdot a \cdot z) = x \cdot a \cdot y \cdot z[/mm]
[mm](x \* y) \* z = (x \* y) \cdot a \cdot z = x \cdot a \cdot y \cdot z[/mm]
[mm] \Rightarrow (G,\*)[/mm] ist Halbgruppe.
Neutrales Element:
Da [mm](G,\cdot)[/mm] eine Gruppe ist, existiert ein [mm]e=1 \in G[/mm], für das gilt:
[mm]\forall x \in G : e \cdot x = 1 \cdot x = x \cdot 1 = x \cdot e = x[/mm]
Sei [mm]e = \frac{1}{a} \in G, a \not= 0[/mm] das neutrale Element von [mm](G,\*), \forall x \in G[/mm] gilt:
[mm]e \* x = \frac{1}{a} \cdot a \cdot x = 1 \cdot x = x[/mm]
[mm]e \* x = x \cdot a \cdot \frac{1}{a} = x \cdot 1 = x[/mm]
Somit existiert das neutrale Element.
Was ich leider nicht hinbekomme ist, das inverse Element, da muss ja [mm]\frac{1}{a}[/mm] rauskommen.
|
|
|
|
|
Hey fider,
Wenn du eine Frage zu einem Thema hast, kannst du auch immer gern eine weitere Frage in einem Thread posten, du musst deine Fragen nicht als Antwort einstellen.
Bei der Assoziativität hast du ein $a$ verloren, da müssen auf der rechten Seite am Schluss jeweils zwei Stück stehen, da du * ja zwei Mal anwendest.
Für die Inversen:
Für ein $x [mm] \in [/mm] G$ ist ein $y [mm] \in [/mm] G$ gesucht, sodass [mm] $x\*y= a^{-1}$.
[/mm]
Es ist [mm] $x\*y [/mm] = xay$, also wählen wir doch einfach unser $y$ geeignet als
$y = [mm] a^{-1}x^{-1}a^{-1} [/mm] = [mm] (axa)^{-1}$.
[/mm]
Du musst dann natürlich noch zeigen, dass das wirklich das Inverse von $x$ bezüglich * ist.
@ felix: Wo brauchst du, dass $a$ im Zentrum liegt?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:49 So 14.04.2013 | Autor: | felixf |
Moin!
> @ felix: Wo brauchst du, dass [mm]a[/mm] im Zentrum liegt?
Das haettest du mich vor 1455 Tagen fragen sollen, mittlerweile weiss ich nicht mehr was ich mir damals gedacht hatte... Es sollte meiner (jetztigen) Meinung nach mit jedem Gruppenelement $a$ funktionieren.
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:47 So 14.04.2013 | Autor: | fider |
Hallo Shadowmaster,
ja das war nur ein Tippfehler, natürlich steht bei mir hier ein a drin.
[mm]i = \frac{1}{a \cdot x \cdot a}[/mm] hatte ich auch überlegt, wobei meine Überlegungen bei einem [mm]\frac{1}{xa^2}[/mm] und der Kommutativität von [mm]\cdot[/mm] hängengeblieben sind.
Doch dann habe ich das gleich wieder verworfen.
Viele Grüße
Fider
|
|
|
|