www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Gruppenhomomorphismus
Gruppenhomomorphismus < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppenhomomorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:49 Sa 19.11.2005
Autor: sternchen19.8

Es sei h:( [mm] \IR,+) [/mm] --> ((0, [mm] \infty),.) [/mm] ein stetiger Gruppenhomomorphismus. Zeige, dass ein a [mm] \in [/mm] (0, [mm] \infty) [/mm] existiert, so dass h(x) = [mm] a^x [/mm] für alle x [mm] \in \IR. [/mm]
Leider habe ich von Homomorphismen keine Ahnung. Würde mich echt freuen, wenn mir einer von euch helfen könnte.
Schönes Wochenende noch!!!

        
Bezug
Gruppenhomomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 15:14 Sa 19.11.2005
Autor: SEcki


> Es sei h:( [mm]\IR,+)[/mm] --> ((0, [mm]\infty),.)[/mm] ein stetiger
> Gruppenhomomorphismus. Zeige, dass ein a [mm]\in[/mm] (0, [mm]\infty)[/mm]
> existiert, so dass h(x) = [mm]a^x[/mm] für alle x [mm]\in \IR.[/mm]

Also von der additiven Gruppe in die positiven Zahlen - die sind aber mit der Multiplikation versehen, oder?

>  Leider
> habe ich von Homomorphismen keine Ahnung.

Die Definition kennst du aber? Wichtig ist hier das stetig - es reicht also, auf [m]\IQ[/m] zu wissen, was der Homomorphismus macht (klar?), jetzt gehe Schritt für Schritt: was ist das Bild der 1? Wie kommt man dann zum Bild von [m]\IZ[/m]? Was ist dann mit Brüchen? Was macht dann das ganze auf [m]\IQ[/m]?

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]