www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Häufungspunkte
Häufungspunkte < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Häufungspunkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:44 So 03.12.2006
Autor: nicebear

hi alle zusammen, ich habe noch keinen ansatz für die folgende Aufgabe. kann jemand mir bitte helfen? ich danke euch im vorraus.

Sei (x,d) ein metrischer Raum und (Xn) eien Folge in X. Beweise, dass die Menge der Häufungspunkte von (Xn) abgeschlossen ist.



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Häufungspunkte: Antwort
Status: (Antwort) fertig Status 
Datum: 17:26 So 03.12.2006
Autor: SEcki


> Sei (x,d) ein metrischer Raum und (Xn) eien Folge in X.
> Beweise, dass die Menge der Häufungspunkte von (Xn)
> abgeschlossen ist.

Nehme mal eine kovergente Folge mit Foglengliedern alels Häufungspunkte. Zeige: der Grenzwert ist auch Häfungspunkt.

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]