www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Häufungspunkte 2
Häufungspunkte 2 < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Häufungspunkte 2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:48 Mi 09.01.2008
Autor: Phecda

hi ich hätte eine frage zu Häufungspunkten
ein bsp. ist

http://www.iwr.uni-heidelberg.de/groups/mathlife/teaching/ws0708/analysis/problems10.pdf
zweite seite Aufg 3

ok die beiden häufungspunkte 2 und 0 kann ich leicht finden mit epsilon kalkül, aber wie kann ich beweisen, dass es bis auf die beiden kein häufungspunkt gibt.
bzw. wie ist die allgemeine vorgehensweise bei limsup bzw. lim inf suche?

ok vielen dank für die hilfe
mfg


        
Bezug
Häufungspunkte 2: Antwort
Status: (Antwort) fertig Status 
Datum: 07:24 Do 10.01.2008
Autor: Somebody


> hi ich hätte eine frage zu Häufungspunkten
>  ein bsp. ist
>
> http://www.iwr.uni-heidelberg.de/groups/mathlife/teaching/ws0708/analysis/problems10.pdf
>  zweite seite Aufg 3
>  
> ok die beiden häufungspunkte 2 und 0 kann ich leicht finden
> mit epsilon kalkül, aber wie kann ich beweisen, dass es bis
> auf die beiden kein häufungspunkt gibt.
>  bzw. wie ist die allgemeine vorgehensweise bei limsup bzw.
> lim inf suche?

Rein mechanische Verfahren gibt es wohl nicht. In Deinem Beispiel ist aber klar, dass die Folge der [mm] $a_n$ [/mm] sich in zwei konvergente Teilfolgen [mm] $a_{2n}$ [/mm] mit Limes $2$ und [mm] $a_{2n+1}$ [/mm] mit Limes $0$ disjunkt zerlegen lässt.

Gäbe es einen weiteren Häufungspunkt der Folge [mm] $a_n$, [/mm] so müsste es eine Teilfolge von [mm] $a_n$ [/mm] geben, die gegen diesen Häufungspunkt konvergiert. Aber jede Teilfolge von [mm] $a_n$ [/mm] muss entweder unendlich viele Glieder der Form [mm] $a_{2n}$ [/mm] oder unendlich viele Glieder der Form [mm] $a_{2n+1}$ [/mm] besitzen. Im ersten Falle konvergiert sie notwendigerweise gegen $2$ im zweiten Falle konvergiert sie gegen $0$. Also muss der Häufungspunkt von [mm] $a_n$, [/mm] gegen den diese Teilfolge konvergiert, entweder $2$ oder $0$ sein. Somit sind $2$ und $0$ die einzigen Häufungspunkte der Folge [mm] $a_n$. [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]