www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Harmonische Reihe
Harmonische Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Harmonische Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:18 Do 31.01.2008
Autor: thb

Aufgabe
[mm] \begin{gathered} \sum\limits_{k \geqslant 1} {\frac{1} {k}} = 1 + \frac{1} {2} + \frac{1} {3} + ... \end{gathered} [/mm]  

Hi, mir ist die Herleitung der Divergenz der harmonischen Reihe nicht ganz klar. Vielleicht kann jemand Klarheit schaffen…
Vielen Dank im voraus.

[mm] \begin{gathered} \sum\limits_{k \geqslant 1} {\frac{1} {k}} = 1 + \frac{1} {2} + \frac{1} {3} + ...{\text{ (Das ist die harmonische Folge)}} \hfill \\ {\text{Dann steht hier im Skript:}} \hfill \\ s_{2n} - s_n = \frac{1} {{n + 1}} + \frac{1} {{n + 2}} + ... + \frac{1} {{2n}} \geqslant n \cdot \frac{1} {{2n}} = \frac{1} {2} \hfill \\ {\text{Wie kommt die Gleichung zustande???}} \hfill \\ s_n {\text{ ist doch die n - te Partialsumme}}{\text{, also }}1 + \frac{1} {2} + \frac{1} {3}... + \frac{1} {n},{\text{ und}} \hfill \\ {\text{ was ist dann }}s_{2n} {\text{ (nur gerade Indizes?)}}\,{\text{und wie kommt man dann auf }}\frac{1} {{n + 1}} + \frac{1} {{n + 2}} + ... + \frac{1} {{2n}}? \hfill \\ {\text{Dann weiter unten hei{\ss}t es:}} \hfill \\ {\text{Daraus folgt durch vollstä ndige Induktion}} \hfill \\ {\text{ }}s_{2^n } \geqslant 1 + \frac{n} {2},\quad n \geqslant 0. \hfill \\ {\text{Ist der Index }}2^n {\text{ ein Druckfehler? }} \hfill \\ {\text{Nach was wird Induktion gefü hrt es ist doch zu zeigen}}{\text{, dass die Folge}} \hfill \\ {\text{der Partialsummen und beschrä nkt ist und die Reihe daher bestimmt divergent ist!? }} \hfill \\ \end{gathered} [/mm]

        
Bezug
Harmonische Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 03:04 Fr 01.02.2008
Autor: schachuzipus

Hallo thb,

bitte nach Möglichkeit Doppelposts vermeiden.

Ich deklariere diesen post mal als Mitteilung, da der andere beantwortet ist


LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]