www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Hauptachsentransformation
Hauptachsentransformation < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hauptachsentransformation: Verständnis
Status: (Frage) überfällig Status 
Datum: 17:21 Sa 07.07.2012
Autor: pleaselook

Hallo.

Also ich betrachte 3D Punktwolcken und möchte diese am Koordinatensystem ausrichten.

Über die geometrische Momente zweiter Ordnung kann man dafür die Trägheitsmatrix aufstellen, diese Diagonaliesieren und erhält dann die Eigenwerte und Eigenvektoren des charakteristischen Ellipsoids der Punktwolke.
Ordnet man nun die Eigenvektoren spaltenweise an, so beschreibt die Matrix die Abbildung der Koordinatenachsen auf die Hauptachsen. Die inverse Matrix (hier die transponierte) beschreibt die Abbildung der Hauptachsen auf die Koordinatenachsen.

Diese kann sich aus einer Rotation (det=1) oder Rot mit Spiegelung (det=-1) zusammensetzen.

Frage: Welche rolle spielt die Reihenfolge der Eigenvektoren.

1)Normalerweise sortiert man die eigenwerte und eigenvektoren, so dass l1>l2>l3. Das stellt sicher, dass die längste Hauptachse auf die x-, .... und die kürzeste auf die z-Achse abgebildet werden?

2) Wenn ich meine Abbildung, wie in 1) wähle und die Abbildung keine Spiegelung beinhaltet, gergeben sich doch immernoch mehere (8?) Möglichkeiten, denn entlang jeder achse kann zusätzlich um 180 Grad gedeht sein?  

Stimmt das so?

        
Bezug
Hauptachsentransformation: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Mo 09.07.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]